Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Trương Mạnh
Xem chi tiết
Tomori Nao
Xem chi tiết
Herera Scobion
18 tháng 3 2022 lúc 9:00

Xét tam giácBCE= tam giác CBD (cạnh huyền -mgóc nhọn)

góc ABC = góc ACB ( cân tại A)

BC chung 

==> BD=CE

 

Herera Scobion
18 tháng 3 2022 lúc 9:01

b) Tam giác BCE=tam giác CBD chứng minh ở câu a nên 

góc BCE = góc DBC

--> IBC cân tại I

Minh Thư
Xem chi tiết
ミ★Zero ❄ ( Hoàng Nhật )
7 tháng 3 2023 lúc 8:59

A B C I E D

a, Xét tam giác ADB và tam giác AEC có :

AE = AD ( gt )

\(\widehat{A}\) chung

AB = AC ( gt )

=> \(\Delta ADB=\Delta AEC\left(c-g-c\right)\)

b, Do \(\Delta ADB=\Delta AEC\) ( câu a, )

=> \(\widehat{ABD}=\widehat{ACE}\) ( 2 góc tương ứng )

BD nằm giữa 2 tia EB và EC 

=> \(\widehat{EBD}+\widehat{CBD}=\widehat{B}\)

\(\Rightarrow\widehat{CBD}=\widehat{B}-\widehat{EBD}\) ( 1 )

CE nằm giữa 2 tia CD và CB 

\(\Rightarrow\widehat{BCE}+\widehat{DCE}=\widehat{C}\)

\(\Rightarrow\widehat{BCE}=\widehat{C}-\widehat{DCE}\) ( 2 )

Từ ( 1 ) và ( 2 ) 

=> \(\widehat{CBD}=\widehat{BCE}\) hay \(\widehat{IBC}=\widehat{ICB}\)

Xét tam giác IBC có 

\(\widehat{IBC}=\widehat{ICB}\)

=> tam giác IBC cân tại I

c, Xét tam giác AED có :

AE = AD ( gt )

=> Tam giác AED cân tại A

=> \(\widehat{AED}=\dfrac{180^0-\widehat{A}}{2}\)( 3 )

Tam giác ABC cân tại A 

=> \(\widehat{B}=\dfrac{180^0-\widehat{A}}{2}\) ( 4 )

Từ ( 3 ) , ( 4) => \(\widehat{AED}=\widehat{B}\)

Đường thẳng AB bị 2 đường thẳng ED và BC cắt tạo thành cặp góc đồng vị bằng nhau \(\widehat{AED}=\widehat{B}\)

=> ED // BC ( đpcm)

 

Nguyễn Ngọc Thuần Yên
Xem chi tiết
Mink
Xem chi tiết

a: Xét ΔADB và ΔAEC có

AD=AE

\(\widehat{BAD}\) chung

AB=AC

Do đó: ΔADB=ΔAEC

=>BD=CE

b: Ta có: AE+EB=AB

AD+DC=AC

mà AE=AD và AB=AC

nên EB=DC

Xét ΔEBC và ΔDCB có

EB=DC

\(\widehat{EBC}=\widehat{DCB}\)

BC chung

Do đo: ΔEBC=ΔDCB

=>\(\widehat{ECB}=\widehat{DBC}\)

=>\(\widehat{GBC}=\widehat{GCB}\)

=>ΔGBC cân tại G

=>GB=GC

Ta có: ΔEBC=ΔDCB

=>EC=BD

Ta có: EG+GC=EC

DG+GB=DB

mà GC=GB và EC=DB

nên EG=DG

c: TH1: BC=10cm

=>AB=AC=5cm

Vì AB+AC=BC

nên trường hợp này không xảy ra

=>LOại

TH2: BC=5cm

=>AB=AC=10cm

Vì 10+10>5 và 10+5>10 và 10+5>10

nên đây là độ dài ba cạnh của ΔABC phù hợp với yêu cầu đề bài

Chu vi tam giác ABC là:

10+10+5=25(cm)

Dan Choi
Xem chi tiết
Phạm Minh Hoàng
12 tháng 2 2020 lúc 21:41

Cho tam giác ABC vuông tại B có góc B1=B; Â=60o, kẻ BH vuông góc với AC (H thuộc AC). Qua B kẻ đường thẳng d song song với AC.

a) Tính góc ABH.

b) Chứng minh đường thẳng d vuông góc với BH.

Khách vãng lai đã xóa
Trần Bích Ngọc
Xem chi tiết
7/8 Phạm Tiến Mạnh
Xem chi tiết
Nguyễn Lê Phước Thịnh
29 tháng 1 2022 lúc 10:22

a: Xét ΔABD và ΔACE có 

\(\widehat{A}\) chung

AB=AC

\(\widehat{ABD}=\widehat{ACE}\)

Do đó: ΔABD=ΔACE

Suy ra: \(\widehat{EBD}=\widehat{ECD}\)

b: Xét ΔADE có AD=AE

nên ΔADE cân tại A

c: Xét ΔABC có

BD là đường phân giác

nên AD/DC=AB/BC=AC/BC(1)

Xét ΔABC có 

CE là đường phân giác

nên AE/EB=AC/BC(2)

Từ (1) và (2) suy ra AE/EB=AD/DC

hay DE//BC

d: Xét ΔOBC có \(\widehat{OBC}=\widehat{OCB}\)

nên ΔOBC cân tại O

Đức Nguyễn Minh Đức
Xem chi tiết
Nguyễn Lê Phước Thịnh
27 tháng 9 2021 lúc 21:46

a: Xét ΔABD và ΔACE có 

\(\widehat{ABD}=\widehat{ACE}\)

AB=AC
\(\widehat{BAD}\) chung

Do đó: ΔABD=ΔACE

Suy ra: AD=AE

Xét ΔABC có

\(\dfrac{AE}{AB}=\dfrac{AD}{AC}\)

Do đó: DE//BC

Xét tứ giác BEDC có DE//BC

nên BEDC là hình thang

mà BD=CE

nên BEDC là hình thang cân

b: Xét ΔEBD có \(\widehat{EBD}=\widehat{EDB}\left(=\widehat{DBC}\right)\)

nên ΔEBD cân tại E

Suy ra: ED=EB

mà EB=DC

nên BE=ED=DC