Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
NoName.155774
Xem chi tiết
Nguyễn Lê Phước Thịnh
20 tháng 10 2021 lúc 22:59

Bài 2: 

a: Ta có: \(x^2+4x+7\)

\(=x^2+4x+4+3\)

\(=\left(x+2\right)^2+3\ge3\forall x\)

Dấu '=' xảy ra khi x=-2

Triệu Nguyễn Gia Huy
Xem chi tiết
Đỗ Ngọc Hải
10 tháng 8 2015 lúc 8:19

Để A lớn nhất thì x2+4x+7 phải có giá trị dương nhỏ nhất

Ta có:

x2+4x+7=(x+2)2+3\(\ge\)3

=> GTNN của x2+4x+7 là 3

=> GTLN của A là 5/3

I lay my love on you
Xem chi tiết
giải pt bậc 3 trở lên fr...
7 tháng 1 2019 lúc 13:38

cách 2 

\(Pain=\left(\sqrt{2x+1}-\sqrt{\frac{16}{2x+1}}\right)^2\ge0\)

                \(=2x+1-\frac{16}{2x+1}-2\sqrt{\frac{\left(2x+1\right)16}{\left(2x+1\right)}}\ge0\)

                    \(=\frac{\left(2x+1\right)^2+16}{2x+1}\ge8\)

\(a=\frac{2x+1}{4x^2+4x+17}=\frac{2x+1}{\left(2x+1\right)^2+16}\ge\frac{1}{8}\)

giải pt bậc 3 trở lên fr...
7 tháng 1 2019 lúc 13:26

\(4x^2A+4xa+17a=2x+1.\)

\(4x^2A+2x\left(2a-1\right)+\left(17a-1\right)=0\)

để pt có nghiệm thì  \(\Delta`=\left(2a-1\right)^2-4a\left(17a-1\right)\ge0\)

\(\Delta`=\left(1-8a\right)\left(8a+1\right)\ge0\)

\(1-8a\ge0\Leftrightarrow a\le\frac{1}{8}\) " max

\(8a+1\ge0\Leftrightarrow a\ge-\frac{1}{8}\) Min 

\(\frac{1}{8}\ge a\ge-\frac{1}{8}\)

tìm hộ lỗi sai :))  , chia sẻ luôn cách tìm min max pt dạng như trên

công thức tổng quát nè

\(M=\frac{ax^2+bx+C}{ex^2+fx+g}\)

\(ex^2M+fxM+gM=ax^2+bx+c\)

\(x^2\left(e-a\right)+x\left(fm-b\right)+\left(gm-c\right)=0\)

\(\Delta=\left(fm-b\right)^2-4\left(gm-c\right)\left(e-a\right)\ge0\)

pt bậc 2 ẩn M , tính denta ra nghiệm rồi phân thích thành nhân tử là ok

Nguyễn Linh Chi
7 tháng 1 2019 lúc 13:29

\(A=\frac{2x+1}{\left(4x^2+4x+1\right)+16}=\frac{2x+1}{\left(2x+1\right)^2+16}\)

Đặt \(B=\frac{\left(2x+1\right)^2+16}{2x+1}=\left(2x+1\right)+\frac{16}{2x+1}\ge2\sqrt{\left(2x+1\right).\frac{16}{2x+1}}=8\)(bất đẳng thức cosi cho 2 số dương)

min B=8 => maxA=1/8

"=" xảy ra <=> \(2x+1=\frac{16}{2x+1}\Leftrightarrow\left(2x+1\right)^2=16\Leftrightarrow2x+1=4\Leftrightarrow x=\frac{3}{2}\)(vì x>0 nên 2x+1>1)

Killer world
Xem chi tiết
Trà My
30 tháng 6 2017 lúc 17:03

\(\frac{x^2-4x-4}{x^2-4x+5}=\frac{x^2-4x+5}{x^2-4x+5}-\frac{9}{x^2-4x+5}=1-\frac{9}{\left(x^2-4x+4\right)+1}=1-\frac{9}{\left(x-2\right)^2+1}\)

Vì \(\left(x-2\right)^2\ge0\Rightarrow\left(x-2\right)^2+1\ge1\Rightarrow\frac{9}{\left(x-2\right)^2+1}\le9\Rightarrow1-\frac{9}{\left(x-2\right)^2+1}\ge-8\)

Dấu "=" xảy ra khi (x-2)2=0 => x-2=0 => x=2

Vậy gtnn của biểu thức là -8 khi x=2

đề yêu cầu tìm cả max và min hay chỉ 1 là được?

nguyễn thùy linh
2 tháng 12 2017 lúc 13:37

Tấm vải thứ 2 dài là :
                                 85 + 35 = 120 ( m )
Cả 3 tấm vải dài :
                                 85 + 120 + 120 = 325 ( m )
                                                     Đ/S : 325 m

chúc cậu hok tốt @_@

FAH_buồn
6 tháng 6 2019 lúc 5:26

Trl

        Min = - 8 khi x = - 2

Hok tốt

Việt Anh
Xem chi tiết
Minh Hiếu
1 tháng 9 2021 lúc 9:43

a)A=4(x+11/8)^2 -153/16

Min A=-153/16 khi x=-11/8

b)B=3(x-1/3)^2 -4/3

Min B=-4/3 khi x=1/3

Lấp La Lấp Lánh
1 tháng 9 2021 lúc 9:44

Bài 1:

a) \(A=4x^2+11x-2=\left(4x^2+11x+\dfrac{121}{16}\right)-\dfrac{153}{16}=\left(2x+\dfrac{11}{4}\right)^2-\dfrac{153}{16}\ge-\dfrac{153}{16}\)

\(minA=-\dfrac{153}{16}\Leftrightarrow x=-\dfrac{11}{8}\)

b) \(B=3x^2-2x-1=3\left(x^2-\dfrac{2}{3}x+\dfrac{1}{9}\right)-\dfrac{4}{3}=3\left(x-\dfrac{1}{3}\right)^2-\dfrac{4}{3}\ge-\dfrac{4}{3}\)

\(minB=-\dfrac{4}{3}\Leftrightarrow x=\dfrac{1}{3}\)

Bài 2:

a) \(A=-x^2+3x-1=-\left(x^2-3x+\dfrac{9}{4}\right)+\dfrac{5}{4}=-\left(x-\dfrac{3}{2}\right)^2+\dfrac{5}{4}\le\dfrac{5}{4}\)

\(maxA=\dfrac{5}{4}\Leftrightarrow x=\dfrac{3}{2}\)

b) \(B=-x^2-4x+7=-\left(x^2+4x+4\right)+11=-\left(x+2\right)^2+11\le11\)

\(maxB=11\Leftrightarrow x=-2\)

Nguyễn Lê Phước Thịnh
1 tháng 9 2021 lúc 14:51

Bài 1: 

a: Ta có: \(A=4x^2+11x-2\)

\(=4\left(x^2+\dfrac{11}{4}x-\dfrac{1}{2}\right)\)

\(=4\left(x^2+2\cdot x\cdot\dfrac{11}{8}+\dfrac{121}{64}-\dfrac{153}{64}\right)\)

\(=4\left(x+\dfrac{11}{8}\right)^2-\dfrac{153}{16}\ge-\dfrac{153}{16}\forall x\)

Dấu '=' xảy ra khi \(x=-\dfrac{11}{8}\)

b: Ta có: \(B=3x^2-2x-1\)

\(=3\left(x^2-\dfrac{2}{3}x-\dfrac{1}{3}\right)\)

\(=3\left(x^2-2\cdot x\cdot\dfrac{1}{3}+\dfrac{1}{9}-\dfrac{4}{9}\right)\)

\(=3\left(x-\dfrac{1}{3}\right)^2-\dfrac{4}{3}\ge-\dfrac{4}{3}\forall x\)

Dấu '=' xảy ra khi \(x=\dfrac{1}{3}\)

phan tuấn anh
Xem chi tiết
Nguyễn Nhật Minh
23 tháng 12 2015 lúc 22:19

\(A=\frac{1}{\left(x-1\right)\left(x+1\right)}+\frac{1}{\left(x+1\right)\left(x+3\right)}+\frac{1}{\left(x+3\right)\left(x+5\right)}\)

\(2A=\frac{1}{x-1}-\frac{1}{x+1}+\frac{1}{x+1}-\frac{1}{x+3}+\frac{1}{x+3}-\frac{1}{x+5}=\frac{1}{x-1}-\frac{1}{x+5}\)

\(2A=\frac{x+5-x+1}{\left(x-1\right)\left(x+5\right)}=\frac{6}{x^2+4x-5}\Leftrightarrow A=\frac{3}{\left(x+2\right)^2-9}\le\frac{3}{-9}=-3\)

Max A = -3 khi x =-2 (TM)

Lưu Mai Anh Sơn
Xem chi tiết
Hoàng Mai Trang
Xem chi tiết
Con Chim 7 Màu
10 tháng 2 2019 lúc 16:42

\(A=\frac{4x^2-12x+15}{x^2-3x+3}=4+\frac{3}{x^2-3x+3}=4+\frac{3}{\left(x-\frac{3}{2}\right)^2+\frac{3}{4}}\le8\)

dau '=' xay ra khi \(x=\frac{3}{2}\)

\(B=\frac{4x^2-8x+12}{x^2-2x+5}=4-\frac{8}{x^2-2x+5}=4-\frac{8}{\left(x-1\right)^2+4}\le2\)

dau '=' xay ra khi \(x=1\)

Kook Jung
Xem chi tiết
Nguyễn Lê Phước Thịnh
28 tháng 5 2022 lúc 20:34

Bài 2: 

a: \(A=x^2+8x\)

\(=x^2+8x+16-16\)

\(=\left(x+4\right)^2-16\ge-16\)

Dấu '=' xảy ra khi x=-4

b: \(B=-2x^2+8x-15\)

\(=-2\left(x^2-4x+\dfrac{15}{2}\right)\)

\(=-2\left(x^2-4x+4+\dfrac{7}{2}\right)\)

\(=-2\left(x-2\right)^2-7\le-7\)

Dấu '=' xảy ra khi x=2

c: \(C=x^2-4x+7\)

\(=x^2-4x+4+3\)

\(=\left(x-2\right)^2+3\ge3\)

Dấu '=' xảy ra khi x=2

e: \(E=x^2-6x+y^2-2y+12\)

\(=x^2-6x+9+y^2-2y+1+2\)

\(=\left(x-3\right)^2+\left(y-1\right)^2+2\ge2\)

Dấu '=' xảy ra khi x=3 và y=1