Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Ngưu Kim
Xem chi tiết
Uk Luxury
26 tháng 11 2022 lúc 21:23

Làm cho mik ý b và c

Lợi Phan
Xem chi tiết
Mai Tiến Đỗ
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
26 tháng 7 2017 lúc 10:09

Đề kiểm tra Toán 9 | Đề thi Toán 9

a) CE và EB là 2 tiếp tuyến cắt nhau tại E

⇒ EC = EB và CB ⊥ OE

Tương tự, DC và DA là 2 tiếp tuyến cắt nhau tại D

⇒ DC = DA và AC ⊥ OD

Khi đó: AD + BE = DC + EC = DE

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
16 tháng 11 2019 lúc 5:07

Đề kiểm tra Toán 9 | Đề thi Toán 9

d) Ta có: N là trung điểm của BC

⇒ AN là trung tuyến của ΔABC

CO cũng là trung tuyến của ΔABC

AN ∩ CO = H

⇒ H là trọng tâm ΔABC

Đề kiểm tra Toán 9 | Đề thi Toán 9

Vậy khi C di chuyển trên nửa đường tròn (O) thì H di chuyển trên nửa đường tròn

(O; R/3)

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
9 tháng 3 2017 lúc 10:53

Đề kiểm tra Toán 9 | Đề thi Toán 9

c) Xét tam giác DOC vuông tại C, CM là đường cao có:

OM.OD = OC 2 = R 2

Xét tam giác EOC vuông tại C, CN là đường cao có:

ON.OE =  OC 2 = R 2

Khi đó: OM.OD + ON.OE = 2 R 2

Vậy OM.OD + ON.OE không đổi

Trần Lê Hoàng
Xem chi tiết
Nguyễn Lê Phước Thịnh
7 tháng 9 2021 lúc 22:21

a: Xét (O) có 

DA là tiếp tuyến có A là tiếp điểm

DC là tiếp tuyến có C là tiếp điểm

Do đó: DA=DC

Xét (O) có 

EC là tiếp tuyến có E là tiếp điểm

EB là tiếp tuyến có B là tiếp điểm

Do đó: EC=EB

Ta có: CD+CE=DE

nên DA+EB=DE

Duy Trần Khánh
Xem chi tiết
ndbh
Xem chi tiết
Nguyễn Lê Phước Thịnh
6 tháng 3 2023 lúc 14:46

a: Xét tứ giác OBDM có

góc OBD+góc OMD=180 độ

=>OBDM là tư giác nội tiếp

c: Xét ΔKOB và ΔKFE có

góc KOB=góc KFE

góc OKB=góc FKE

=>ΔKOB đồng dạng với ΔKFE
=>KO/KF=KB/KE

=>KO*KE=KB*KF

Tống Khánh Linh
Xem chi tiết
Nguyễn Ngọc Anh Minh
10 tháng 5 2022 lúc 7:43

A B C D H E O

a/ Nối A với D ta có

\(\widehat{ADB}=90^o\) (góc nội tiếp chắn nửa đường tròn) \(\Rightarrow AD\perp BC\)

=> H và D cùng nhìn AC dưới 1 góc vuông => AHDC là tứ giác nội tiếp

b/ 

Xét tg vuông ACO có

\(\widehat{ACO}+\widehat{AOC}=90^o\)

Ta có \(\widehat{ADH}+\widehat{EDB}=\widehat{ADB}=90^o\)

Xét tứ giác nội tiếp AHDC có

 \(\widehat{ACO}=\widehat{ADH}\) (Góc nội tiếp cùng chắn cung AH)

\(\Rightarrow\widehat{AOC}=\widehat{EDB}\)

Xét tam giác EOH và tg EBD có

\(\widehat{BED}\) chung

\(\widehat{AOC}=\widehat{EDB}\)

=> tg EOH đồng dạng với tg EDB (g.g.g)

\(\Rightarrow\dfrac{EH}{EB}=\dfrac{EO}{ED}\Rightarrow EH.ED=EO.EB\)

 

 

 

Minh Hồng
10 tháng 5 2022 lúc 9:50

a) Ta có \(\widehat{ADB}=90^0\) (góc nội tiếp chắn nửa đường tròn) \(\Rightarrow\widehat{ADC}=90^0\)

Tứ giác \(AHDC\) có: \(\widehat{ADC}=\widehat{AHC}=90^0\) mà 2 góc này nội tiếp và chắn cung AC

\(\Rightarrow AHDC\) là tứ giác nội tiếp

b) Tứ giác \(AHDC\) nội tiếp \(\Rightarrow\widehat{ACO}=\widehat{ADE}\) (góc nội tiếp cùng chắn 1 cung)

Ta có: \(\widehat{EOH}=90^0-\widehat{ACO}=90^0-\widehat{ADE}=\widehat{EDB}\)

Xét \(\Delta EOH\) và \(\Delta EDB\) có:

\(\widehat{BED}\) chung

\(\widehat{EOH}=\widehat{EDB}\) (đã chứng minh)

\(\Rightarrow\Delta EOH\sim\Delta EDB\) (g.g) \(\Rightarrow\dfrac{EO}{EH}=\dfrac{ED}{EB}\Rightarrow EH.ED=EO.EB\)