Bài 1: Cho nửa đường tròn đường kính AB. Trên đoạn AB lấy điểm M, gọi H là trung điểm AM. Đường thẳng qua H vuông góc với AB cắt (O) tại C. Đường tròn đường kính MB cắt CB tại I. Chứng minh HI là tiếp tuyến của đường tròn đường kính MB.
Cho nửa đường tròn đường kính $AB$. Trên đoạn $AB$ lấy điểm $M$, gọi $H$ là trung điểm $AM$. Đường thẳng qua $H$ vuông góc với $AB$ cắt nửa đường tròn đã cho tại $C$. Đường tròn đường kính $MB$ cắt $CB$ tại $I$. Chứng minh $HI$ là tiếp tuyến của đường tròn đường kính $MB$.
Gọi O, J lần lượt là trung điểm của AB và MB.
Do MB là đường kính của nửa đường tròn tâm J nên ^MIB=90o⇒^CIM=90o.
Vậy nên tứ giác CHMI nội tiếp.
⇒^HIM=^HCM.
Tam giác ACM cân tại C nên ^HCM=^HCA.
Mà ^HCA=^HBC (Cùng phụ góc CAB)
Tam giác IJB cân tại J nên ^HBC=^JIB.
Tóm lại : ^HIM=^JIB⇒^HIM+^MIJ=^JIB+^MIJ
⇒^HIJ=^MIB=90o.
Vậy nên HI là tiếp tuyến tại I của đường trong đường kính MB
Gọi O, J lần lượt là trung điểm của AB và MB.
Do MB là đường kính của nửa đường tròn tâm J nên .
Vậy nên tứ giác CHMI nội tiếp.
.
Tam giác ACM cân tại C nên .
Mà (Cùng phụ góc CAB)
Tam giác IJB cân tại J nên .
suy ra :
Vậy nên HI là tiếp tuyến tại I của đường trong đường kính MB.
gọi O là trung điểm của AB
E là trung điểm của MB
có tam giác IMB là tam giác nội tiếp đường tròn tâm E
⇒tam giác IMB vuông tại I
⇒góc MIB bằng 90độ
⇒góc CIM bằng 90 độ
⇒tứ giác CHMI là nội tiếp
⇒góc HIM bằng góc HCM
có H là trung điểm của AM
CH là trung tuyến của tam giác CAM
có CH vuông góc với AM
⇒CH là đường cao
xét tam giác CAM có
CH là đường cao(cmt)
CH là trung tuyến(cmt)
⇒tam giác CAM cân tại C
⇒góc HCM bằng góc HCA
mà góc HCA bằng góc HBC (cùng phụ góc ACB)
có E là trung điểm của MB(lấy thêm)⇒IE là trung tuyến
xét tam giác MIB vuông tại I có
IE là trung tuyến
⇒IE bằng 1/2MB
mà ME bằng MB bằng 1/2MB
⇒IE bằng ME(1/2MB)
xét tam giác EIB có IE bằng ME (cmt)
⇒tam giác EIB cần tại E
⇒góc EBI bằng góc EIB
mà góc HCA bằng góc HBC
⇒góc EIB bằng góc HCA
có góc HIM bằng góc EIB
⇒góc HIM+gócMIE bằng góc EIB+góc MIE
⇒góc HIE bằng góc MIB bằng 90 độ
⇒ HI là tiếp tuyến tại I của đường trong đường kính MB
1. cho tam giác ABC.Tia Ax nằm khác phía với AC đối với đường thẳng AB thỏa mãn góc xAB bằng góc ACB.chứng minh Ax là tiếp tuyến của đường tròn ngoại tiếp tam giác ABC
2.cho nửa đường tròn (O) đường kính AB trên đoạn AB lấy điểm M,gọi H là trung điểm của AM.đường thẳng qua H vuông góc với AB cắt (O) tại C .đường tròn đường kính MB cắt BC tại I. CM HI là tiếp tuyến của đường tròn đường kính MB
3.cho nửa đường tròn tâm O đường kính AB, C thuộc nửa đường tròn.vẽ CH vuông góc với AB(H thuộc AB),M là trung điểm CH,BM cắt tiếp tuyến Ax của O tại P .chứng minh PC là tiếp tuyến của (O)
4.cho đường tròn O đường kính AB, M là một điểm trên OB.đường thẳng qua M vuông góc với AB tại M cắt O tại C và D. AC cắt BD tại P,AD cắt BC tại Q,AB cắt PQ tai I chứng minh IC,ID là tiếp tuyến của (O)
5.cho tam giác ABC nội tiếp đường tròn đường kính BC (AB<AC).T là một điểm thuộc OC.đường thẳng qua T vuông góc với BC cắt AC tại H và cắt tiếp tuyến tại A của O tại P.BH cắt (O) tại D. chứng minh PD là tiếp tuyến của O
6.cho tam giác ABC nội tiếp đường tròn O. phân giác góc BAC cắt BC tại D và cắt (O) tại M chứng minh BM là tiếp tuyến của đường tròn ngoại tiếp tam giác ABD
Cho nửa đường tròn tâm O, đường kính AB và M là một điểm tùy ý trên nửa đường tròn (M khác A, B). Lấy điểm I thuộc đoạn thẳng MB (I khác B, M). Kẻ IH vuông góc với AB (H thuộc AB). Tia AI cắt nửa đường tròn tại N. Tia AM cắt tia BN tại C
b)Gọi K là giao điểm của tia BN và tiếp tuyến tại A của nửa đường tròn (O). Khi tứ giác AICK nội tiếp được đường tròn, chứng minh MH vuông góc với MN.
c) Chứng minh rằng: IH/ IC+ IA/ IN+ IB/ IM >6
b) Dễ thấy C là trực tâm của tam giác IAB nên C, I, H thẳng hàng.
Do tứ giác AICK là hình thang nội tiếp được đường tròn nên là hình thang cân.
Khi đó \(\widehat{IAK}=\widehat{CKA}\Rightarrow\widehat{IAB}=\widehat{NBA}\)
Suy ra tam giác NAB vuông cân tại N nên \(\widehat{NBA}=45^o\).
Ta có các tứ giác CMIN, AMIH nội tiếp được nên \(\widehat{NMH}=\widehat{NMI}+\widehat{HMI}=\widehat{ICN}+\widehat{IAB}=45^o+45^o=90^o\Rightarrow MN\perp MH\).
c) Đề phải là \(\dfrac{IC}{IH}+\dfrac{IA}{IN}+\dfrac{IB}{IM}\ge6\).
Đặt \(x=\dfrac{IH}{CH};y=\dfrac{IN}{AN};z=\dfrac{IM}{BM}\left(x,y,z< 1\right)\).
Ta có \(x+y+z=\dfrac{S_{IAB}}{S_{ABC}}+\dfrac{S_{IBC}}{S_{ABC}}+\dfrac{S_{ICA}}{S_{ABC}}=1\).
Lại có \(\dfrac{IH}{CH}=x\Rightarrow\dfrac{CH}{IH}=\dfrac{1}{x}\Rightarrow\dfrac{IC}{IH}=\dfrac{1}{x}-1\).
Tương tự \(\dfrac{IA}{IN}=\dfrac{1}{y}-1;\dfrac{IB}{IM}=\dfrac{1}{z}-1\).
Do đó \(\dfrac{IC}{IH}+\dfrac{IA}{IN}+\dfrac{IB}{IM}=\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}-3\ge_{Svacxo}\dfrac{9}{x+y+z}-3=\dfrac{9}{1}-3=6\).
Vậy ta có đpcm.
Cho nửa đường tròn ( O ) đường kính AB . Trên nửa đường tròn ( O ) lấy điểm C sao cho CA < CB . Trên đoạn OB lấy điểm M sao cho M nằm giữa O và B. Đường thẳng đi qua M
vuông góc với AB cắt tia AC tại N, cắt BC tại E.
a) Chứng minh tứ giác ACEM nội tiếp trong một đường tròn.
b) Tiếp tuyến của nửa đường tròn ( O ) tại C cắt đường thẳng MN tại F. Chứng minh Δ CEF cân.
c) Gọi H là giao điểm của NB với nửa đường tròn ( O ) . Chứng minh HF là tiếp tuyến của nửa đường tròn ( O ) .
Nguyễn Lê Phước Thịnh
Akai Haruma
Nguyễn Việt Lâm
Hồng Phúc
Giúp em câu c là đc ạ
da.ai/vi/solutions/3VuNiZ7de6-Cho%20nửa%20đường%20tròn%20(0)%20đường%20kinh%20AB%20Trên%20nửa%20đường%20tròn%20(0)%20lấy%20điểm%20C9%20sao%20cho
Tk trang đó ak
Cho nửa đường tròn tâm O đường kính AB và tiếp tuyến Ax (A là tiếp điểm, Ax nằm ở nửa mặt phẳng chứa nửa đường tròn bò là AB). Trên đoạn AB lấy điểm M (M khác A, M khác B), đường thẳng vuông góc với AB tại M cắt nửa đường tròn tâm O tại C, tia BC cắt Ax tại D. Gọi N là trung điểm của AD. Gọi H là giao điểm của ON và AC. Kẻ HE vuông góc với AN (E thuộc AN). Đường tròn đường kính NC cắt EC tại F. Chứng minh NF luôn đi qua 1 điểm cố định khi M di chuyển trên AB.
cho đường tròn O đường kính AB .trên đoạn thẳng OB lấy điểm H không trùng với O và B.trên đường thẳng vuông góc với AB tại H lấy điểm M ở ngoài đường tròn O tại C.MA cắt đường tròn O tại C,MB cắt đường tròn O tại D.
a)tính góc ACB và góc ADB
b)MH cắt BC tại I.chứng minh 3 điểm A,I,D thẳng hàng
c)chứng minh bốn điểm M,C,I,D cùng nằm trên một đường tròn
d)gọi E là trung đểm của MI .chứng minh EC là tiếp tuyến của đường tròn O
Cho nửa đường tròn (O; R) đường kính AB. Từ O kẻ đường thẳng vuông góc với AB và cắt đường tròn (O) tại điểm C. Trên cung CB lấy một điểm M bất kì. Kẻ CH vuông góc với AM tại H. Gọi N là giao điểm của OH và MB.
a. Chứng minh tứ giác CHOA nội tiếp được.
b. Chứng minh ˆCAO=ˆONB=45°CAO^=ONB^=45°
c. OH cắt CB tại điểm I và MI cắt (O) tại điểm thứ 2 là D. Chứng minh
CM // BD
Giải giúp mình câu c với ạ
Cho nửa đường tròn (O;R), đường kính AB, H thuộc OA. Qua H kẻ đường thẳng vuông góc với AB cắt nửa đuòng tròn (O) tại M. Gọi I là trung điểm MH, tia AI cắt nửa đường tròn (O) tại C, tia BC cắt tia HM tại D
1. Chứng minh 4 diểm: B, H, I, C thuộc một đuòng tròn, xác đinh tâm của đường tròn đó.
1: Xét tứ giác AEHF có
\(\widehat{AEH}+\widehat{AFH}=90^0+90^0=180^0\)
=>AEHF là tứ giác nội tiếp
=>A,E,H,F cùng thuộc một đường tròn
2: Kẻ tiếp tuyến Ax tại A của (O)
Xét (O) có
\(\widehat{xAB}\) là góc tạo bởi tiếp tuyến Ax và dây cung AB
nên \(\widehat{xAB}=\dfrac{1}{2}\cdot sđ\stackrel\frown{BA}\)
Xét (O) có
\(\widehat{ACB}\) là góc nội tiếp chắn cung BA
Do đó: \(\widehat{ACB}=\dfrac{1}{2}\cdot sđ\stackrel\frown{BA}\)
=>\(\widehat{xAB}=\widehat{ACB}\left(1\right)\)
Xét (O) có
ΔABC nội tiếp
BC là đường kính
Do đó: ΔABC vuông tại A
Xét tứ giác AEHF có
\(\widehat{AEH}=\widehat{AFH}=\widehat{FAE}=90^0\)
=>AEHF là hình chữ nhật
=>\(\widehat{AEF}=\widehat{AHF}\)
mà \(\widehat{AHF}=\widehat{ACB}\left(=90^0-\widehat{HAC}\right)\)
nên \(\widehat{AEF}=\widehat{ACB}\left(2\right)\)
Từ (1) và (2) suy ra \(\widehat{xAB}=\widehat{AEF}\)
mà hai góc này là hai góc ở vị trí so le trong
nên Ax//EF
Ta có: Ax//EF
OA\(\perp\)Ax
Do đó: OA\(\perp\)EF