Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Cô Hoàng Huyền
Xem chi tiết
Nhật Nam
22 tháng 8 2021 lúc 16:28

Gọi O, J lần lượt là trung điểm của AB và MB.
Do MB là đường kính của nửa đường tròn tâm J nên ^MIB=90o^CIM=90o.

Vậy nên tứ giác CHMI nội tiếp.

^HIM=^HCM.

Tam giác ACM cân tại C nên ^HCM=^HCA.

Mà ^HCA=^HBC (Cùng phụ góc CAB)

Tam giác IJB cân tại J nên ^HBC=^JIB.

Tóm lại : ^HIM=^JIB^HIM+^MIJ=^JIB+^MIJ

^HIJ=^MIB=90o.

Vậy nên HI là tiếp tuyến tại I của đường trong đường kính MB

Khách vãng lai đã xóa
Nguyễn Thị Linh
17 tháng 11 2021 lúc 9:53

Gọi O, J lần lượt là trung điểm của AB và MB.
Do MB là đường kính của nửa đường tròn tâm J nên \widehat{MIB}=90^o\Rightarrow\widehat{CIM}=90^o.

Vậy nên tứ giác CHMI nội tiếp.

\Rightarrow\widehat{HIM}=\widehat{HCM}.

Tam giác ACM cân tại C nên \widehat{HCM}=\widehat{HCA}.

Mà \widehat{HCA}=\widehat{HBC} (Cùng phụ góc CAB)

Tam giác IJB cân tại J nên \widehat{HBC}=\widehat{JIB}.

suy ra : \widehat{HIM}=\widehat{JIB}\Rightarrow\widehat{HIM}+\widehat{MIJ}=\widehat{JIB}+\widehat{MIJ}

\Rightarrow\widehat{HIJ}=\widehat{MIB}=90^o.

Vậy nên HI là tiếp tuyến tại I của đường trong đường kính MB.

Khách vãng lai đã xóa
Trần Gia Bách
17 tháng 11 2021 lúc 15:22

gọi O là trung điểm của AB

       E là trung điểm của MB

có tam giác IMB là tam giác nội tiếp đường tròn tâm E

⇒tam giác IMB vuông tại I

⇒góc MIB bằng 90độ 

⇒góc CIM bằng 90 độ

⇒tứ giác CHMI là nội tiếp 

⇒góc HIM bằng góc HCM

có H là trung điểm của AM

CH là trung tuyến của tam giác CAM

có CH vuông góc với AM 

⇒CH là đường cao 

xét tam giác CAM có

CH là đường cao(cmt)

CH là trung tuyến(cmt)

⇒tam giác CAM cân tại C

⇒góc HCM bằng góc HCA

mà góc HCA bằng góc HBC (cùng phụ góc ACB)

có E là trung điểm của MB(lấy thêm)⇒IE là trung tuyến 

xét tam giác MIB vuông tại I có 

IE là trung tuyến

⇒IE bằng 1/2MB

mà ME bằng MB bằng 1/2MB

⇒IE bằng ME(1/2MB)

xét tam giác EIB có IE bằng ME (cmt)

⇒tam giác EIB cần tại E

⇒góc EBI bằng góc EIB

mà góc HCA bằng góc HBC

⇒góc EIB bằng góc HCA

có góc HIM bằng góc EIB 

⇒góc HIM+gócMIE bằng góc EIB+góc MIE

⇒góc HIE bằng góc MIB bằng 90 độ

 HI là tiếp tuyến tại I của đường trong đường kính MB

 

Khách vãng lai đã xóa
phạm hoàng
Xem chi tiết
Bambi Hoàng
Xem chi tiết
Trần Minh Hoàng
26 tháng 5 2021 lúc 12:12

b) Dễ thấy C là trực tâm của tam giác IAB nên C, I, H thẳng hàng.

Do tứ giác AICK là hình thang nội tiếp được đường tròn nên là hình thang cân.

Khi đó \(\widehat{IAK}=\widehat{CKA}\Rightarrow\widehat{IAB}=\widehat{NBA}\)

Suy ra tam giác NAB vuông cân tại N nên \(\widehat{NBA}=45^o\).

Ta có các tứ giác CMIN, AMIH nội tiếp được nên \(\widehat{NMH}=\widehat{NMI}+\widehat{HMI}=\widehat{ICN}+\widehat{IAB}=45^o+45^o=90^o\Rightarrow MN\perp MH\).

 

Trần Minh Hoàng
26 tháng 5 2021 lúc 12:16

undefined

c) Đề phải là \(\dfrac{IC}{IH}+\dfrac{IA}{IN}+\dfrac{IB}{IM}\ge6\).

Đặt \(x=\dfrac{IH}{CH};y=\dfrac{IN}{AN};z=\dfrac{IM}{BM}\left(x,y,z< 1\right)\).

Ta có \(x+y+z=\dfrac{S_{IAB}}{S_{ABC}}+\dfrac{S_{IBC}}{S_{ABC}}+\dfrac{S_{ICA}}{S_{ABC}}=1\).

Lại có \(\dfrac{IH}{CH}=x\Rightarrow\dfrac{CH}{IH}=\dfrac{1}{x}\Rightarrow\dfrac{IC}{IH}=\dfrac{1}{x}-1\).

Tương tự \(\dfrac{IA}{IN}=\dfrac{1}{y}-1;\dfrac{IB}{IM}=\dfrac{1}{z}-1\).

Do đó \(\dfrac{IC}{IH}+\dfrac{IA}{IN}+\dfrac{IB}{IM}=\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}-3\ge_{Svacxo}\dfrac{9}{x+y+z}-3=\dfrac{9}{1}-3=6\).

Vậy ta có đpcm.

Nguyễn Lê Bảo Anh
Xem chi tiết
Aurora
Xem chi tiết
Aurora
8 tháng 5 2021 lúc 21:28

Nguyễn Lê Phước Thịnh   

Akai Haruma 

Nguyễn Việt Lâm 

Hồng Phúc 

Giúp em câu c là đc ạ

Hquynh
8 tháng 5 2021 lúc 21:30

da.ai/vi/solutions/3VuNiZ7de6-Cho%20nửa%20đường%20tròn%20(0)%20đường%20kinh%20AB%20Trên%20nửa%20đường%20tròn%20(0)%20lấy%20điểm%20C9%20sao%20cho

Tk trang đó ak

Heri Mỹ Anh
Xem chi tiết
huỳnh tấn đạt
Xem chi tiết
9A5 04 Hồng Anh
Xem chi tiết
Nguyễn Trung Hiếu
Xem chi tiết
Mon an
Xem chi tiết
Nguyễn Lê Phước Thịnh
15 tháng 12 2023 lúc 12:06

1: Xét tứ giác AEHF có

\(\widehat{AEH}+\widehat{AFH}=90^0+90^0=180^0\)

=>AEHF là tứ giác nội tiếp

=>A,E,H,F cùng thuộc một đường tròn

2: Kẻ tiếp tuyến Ax tại A của (O)

Xét (O) có

\(\widehat{xAB}\) là góc tạo bởi tiếp tuyến Ax và dây cung AB

nên \(\widehat{xAB}=\dfrac{1}{2}\cdot sđ\stackrel\frown{BA}\)

Xét (O) có

\(\widehat{ACB}\) là góc nội tiếp chắn cung BA

Do đó: \(\widehat{ACB}=\dfrac{1}{2}\cdot sđ\stackrel\frown{BA}\)

=>\(\widehat{xAB}=\widehat{ACB}\left(1\right)\)

Xét (O) có

ΔABC nội tiếp

BC là đường kính

Do đó: ΔABC vuông tại A

Xét tứ giác AEHF có

\(\widehat{AEH}=\widehat{AFH}=\widehat{FAE}=90^0\)

=>AEHF là hình chữ nhật

=>\(\widehat{AEF}=\widehat{AHF}\)

mà \(\widehat{AHF}=\widehat{ACB}\left(=90^0-\widehat{HAC}\right)\)

nên \(\widehat{AEF}=\widehat{ACB}\left(2\right)\)

Từ (1) và (2) suy ra \(\widehat{xAB}=\widehat{AEF}\)

mà hai góc này là hai góc ở vị trí so le trong

nên Ax//EF

Ta có: Ax//EF

OA\(\perp\)Ax

Do đó: OA\(\perp\)EF