cho đường tròn (o r) và dây cd cố định .m thuộc tia đối cd .qua m kẻ 2 tiếp tuyến ma,mb .i là trung điểm cd .bi giao (o) tại e ,om giao ab tại h( vẽ hình)
a, ae//cd
b, tính om theo r
c, tìm vj trí điểm m để ma vuống góc với mb
d, hb là p/g góc chd
Cho đường tròn (O; R) và dây CD cố định. Điểm M thuộc tia đối của tia CD. Qua M kẻ hai tiếp tuyên MA, MB tới đường tròn (A thuộc cung lớn CD). Gọi I là trung điểm CD. Nối BI cắt đường tròn tại E (E khác B). Nối OM cắt AB tại H
a, Chứng minh AE song song CD
b, Tìm vị trí của M để MA ^ MB
c, Chứng minh HB là phân giác của CHD
a, HS tự chứng minh
b, OM = R 2
c, MC. MD = M A 2 = MH.MO
=> MC. MD = MH.MO
=> DMHC ~ DMDO (c.g.c)
=> M H C ^ = M D O ^ => Tứ giác CHOD nội tiếp
Chứng minh được: M H C ^ = O H D ^
=> C H B ^ = B H D ^ (cùng phụ hai góc bằng nhau)
Cho Đường tròn(O;R) và dây CD cố định.điểm M thuộc tia đối của tia CD.Qua M kẻ hai tiếp tuyến MA,MB tới đường tròn (A thuộc cung lớn CD) . I là trung điểm CD , BI giao (O) tại E , OM giao AB tại H
a) M,A,O,I,B cùng thuộc đường tròn (O)
b) EA//CD
c)tìm M để MA vuông góc MB
d)HD là p/g góc CHD
Giải bài toán hình Cho đường tròn (O;R) với dây CD cố định.Điểm M thuộc tia đối của tia CD .Qua M kẻ hai tiếp tuyến MA,MB với (O;R) ( A thuộc cung lớn CD).Gọi I là trung điểm CD.Nối BI cắt đường tròn tại E.Nối OM cắt AB tại H. 1 Cm năm điểm A,B,M,O,I thuộc một đường tròn 2 Cm AE song song với CD 3 Tìm vị trí của M để MA vuông gón với MB 4 Cm HB là phân giác góc CHD
a. Do I là trung điểm CD nên \(OI⊥CD\Rightarrow\widehat{OIM}=90^o.\)
Ta thấy \(\widehat{OAM}=\widehat{OBM}=\widehat{OIM}=90^o\) nên A, B ,M , O, I cùng thuộc đường tròn đường kính MO.
b. Xét đường tròn (O) có \(\widehat{AEB}=\frac{\widehat{AOB}}{2}\) (1)
Xét đường tròn đường kính MO có MA = MB nên \(sđ\widebat{AM}=sđ\widebat{MB}\).
Nên \(\widehat{AOB}=\frac{sđ\widebat{AMB}}{2}=sđ\widebat{AM}=sđ\widebat{MB}\)
Lại có \(\widehat{MIB}=\frac{sđ\widebat{MB}}{2}=\frac{\widehat{AOB}}{2}\), vậy nên \(\widehat{MIB}=\widehat{AEI.}\)
Lại có \(\widehat{MIB}=\widehat{EID}\) (đối đỉnh) nên \(\widehat{AEI}=\widehat{EID}\)
Chúng ở vị trí so le trong nên AE // CD.
c. Nếu \(MA⊥MB\)thì tứ giác OAMB là hình chữ nhật, lại có OA = OB nên nó là hình vuông. Khi đó \(OM=\sqrt{2OB^2}=R\sqrt{2}\)
Vậy để \(MA⊥MB\) thì M thuộc tia đối tia CD mà \(OM=R\sqrt{2}\)
d. Ta thấy ngay \(\Delta MBD\sim\Delta MCB\left(g-g\right)\Rightarrow\frac{MB}{MC}=\frac{MD}{MB}\Rightarrow MB^2=MC.MD\)
Xét tam giác vuông MBO có BH là đường cao nên \(MB^2=MH.MO\)
Vậy thì \(MH.MO=MC.MD\Rightarrow\frac{MH}{MD}=\frac{MC}{MO}\)
Suy ra \(\Delta MCH\sim\Delta MDO\left(c-g-c\right)\)
Vậy thì \(\widehat{MHC}=\widehat{MDO}\left(1\right)\) hay tứ giác HCDO nội tiếp. Vậy \(\widehat{OCD}=\widehat{OHD}\) (2) (Cùng chắn cung OD)
Lại có \(\widehat{MDO}=\widehat{OCD}\) (OC = OD = R) nên \(\widehat{MHC}=\widehat{OHD}\)
Vậy thì \(\widehat{CHB}=\widehat{DHB}\) (Cùng phụ với góc MHC và OHD)
Tóm lại HB là phân giác góc CHD(đpcm).
chưa học và khó quá nên ít người trả lời
Cho (O,R) và dây CD không đi qua tâm. Lấy M thuộc tia đối của tia CD. Qua M kẻ 2 tiếp tuyến MA, MB ( với A, B là 2 tiếp điểm) với đường tròn và A thuộc cung CD lớn. Gọi I là trung điểm của CD. Nối BI cắt (O) tại E. OM cắt AB tại H
a, CM : M, A, O, I, B cùng thuộc 1 đường tròn.
b, CM: AE//CD.
c, Tìm vị trí của M để MA vuông góc với MB
Giúp =)
Cho đườn tròn (O,R) và dây CD cố định , điểm M thuộc tia đối của dây CD . Từ M kẻ tiếp tuyến MA, MB với đường tròn (A thuộc cung lớn CD) .Gọi I là trung điểm CD. Nối BI cắt đường tròn tại E (E khác B). Nối AB cắt OM tại H.
A) Chứng minh A,O,M,B,I cùng thuộc một đường tròn.
B) Chứng minh CD // EA
C) Tìm vị trí của M để MA\(\perp\)MB
D)Chứng minh HB là phân giác CHD
Cho đường tròn (O;R) với dây CD cố định .Điểm M thuộc tia đối của tia DC.Qua M kẻ hai tiếp tuyến MA,MB tới đường tròn (O;R) (A thuộc cung lớn CD) . Gọi I là trung điểm của CD , OM cắt AB tại H.Tia OI cắt AB tại K ,nối AB cắt CD tại E
a) C/m 4 điểm M,H,I,K cùng thuộc 1 đường tròn
b) C/m ME.MI=MA^2
c) Xác định vị trí của M để tam giác MAB đều
d) C/m KC là tiếp tuyến của đường tròn
Cho Đường tròn(O;R) và dây CD cố định.điểm M thuộc tia đối của tia CD.Qua M kẻ hai tiếp tuyến MA,MB tới đường tròn (A thuộc cung lớn CD) gọi I là chung điểm của CD nối BI cắt đường tròn tại E.nối OM cắt AB tại H
a,CM 5 điểm M,A,O,I,B thuộc 1 đường tròn
b,CM AE//CD
Cho ( O;R ), dây CD cố định. Điểm M thuộc tia đối của tia CD. Qua M kẻ hai tiếp
tuyến MA, MB tới đường tròn (A thuộc cung lớn CD). Gọi I là trung điểm của CD. Nối BI
cắt đường tròn tại E. Nối OM cắt AB tại H.
a) Chứng minh tứ giác MBIO, MIOA nội tiếp
b) Chứng minh: MB 2 = MC.MD
c) Chứng minh AE // CD
d) Chứng minh tứ giác OHCD nội tiếp
Cho Đường tròn(O;R) và dây CD cố định.điểm M thuộc tia đối của tia CD.Qua M kẻ hai tiếp tuyến MA,MB tới đường tròn (A thuộc cung lớn CD) . I là trung điểm CD , BI giao (O) tại E , OM giao AB tại H
a) M,A,O,I,B cùng thuộc đường tròn (O)
b) EA//CD
c)tìm M để MA vuông góc MB
d)HD là p/g góc CHD
Bạn xem lại câu d đi, hình như sai rồi nên mình chỉ làm giúp bạn câu a, b và c thôi nha
a, Xét đường tròn (O) có: I là trung điểm của CD (gt) => \(OI\perp CD\) tại I => \(\widehat{OIM}=90^0\)
Xét tứ giác AOBM có: \(\widehat{OAM}\) và \(\widehat{OBM}\) là 2 góc đối diện
Mà \(\widehat{OAM}=90^0\)(AM là tiếp tuyến của (O)) ; \(\widehat{ONM}=90^0\) (BM là tiếp tuyến của (O))
=> \(\widehat{OAM}+\widehat{OBM}=90^0+90^0=180^0\)
=> AOBM là tgnt => 4 điểm M, A, O, B cùng thuộc 1 đg tròn (1)
Xét tứ giác OIBM có: \(\widehat{OIM}=90^0\left(cmt\right)\) ; \(\widehat{OBM}=90^0\left(cmt\right)\)
=> \(\widehat{OIM}=\widehat{OBM}\)
=> OIBM là tgnt => 4 điểm O, I, B, M cùng thuộc một đg tròn (2)
Từ (1) và (2) => 5 điểm M, A, O, I, B cùng thuộc 1 đg tròn
b, Gọi giao điểm của OM với (O) là K
Xét đg tròn (O), tiếp tuyến MA, MB có: MA cắt MB tại M
=> OM là phân giác của \(\widehat{AOB}\)
Xét \(\Delta AOB\) cân tại O (OA=OB=R) có: OM là phân giác của \(\widehat{AOB}\)
=> \(OM\perp AB\) tại H => cung AK = cung BK = 1/2 cung AB
Vì OIBM là tgnt (cmt) => \(\widehat{BOK}=\widehat{BIC}\)
Xét đg tròn (O) có: \(\widehat{BOK}\) = sđ cung BK (góc ở tâm chắn cung BK)
\(\widehat{AEB}=\dfrac{1}{2}\) sđ cung AB (góc nội tiếp chắn cung AB)
Mà cung BK = 1/2 cung AB (cmt)
=> \(\widehat{BOK}=\widehat{AEB}\)
=> \(\widehat{BIC}=\widehat{AEB}\). Mà 2 góc này ở vị trí đồng vị
=> EA // CD
c, Để \(MA\perp MB\) <=> \(\widehat{AMB}=90^0\)
Xét đg tròn (O), tiếp tuyến MA, MB có: MA cắt MB tại M
=> OM là phân giác của \(\widehat{AMB}\)
=> \(\widehat{AMO}=45^0\)
Xét \(\Delta AMO\) vuông tại A (MA là tiếp tuyến của (O)) có:
\(\widehat{AMO}+\widehat{AOM}=90^0\Rightarrow\widehat{AOM}=90^0-45^0=45^0\)
=> \(\Delta AMO\) vuông cân tại A
=> OA=AM=R
Mặt khác \(OA^2+AM^2=OM^2\) (định lý Pytago)
=> \(OM^2=R^2+R^2=2R^2\)
=> \(OM=\sqrt{2}R\)
Vậy để \(MA\perp MB\) thì \(OM=\sqrt{2}R\)