tìm GTLN của 1/x2-12x+2019
tìm GTLN của:
A=3x2+12x+17/x2+4x+5
\(A=\dfrac{3x^2+12x+17}{x^2+4x+5}=\dfrac{3\left(x^2+4x+5\right)+2}{x^2+4x+5}=3+\dfrac{2}{x^2+4x+5}\)
Ta có: \(x^2+4x+5=x^2+4x+4+1=\left(x+2\right)^2+1\ge1\)
\(\Rightarrow\dfrac{2}{x^2+4x+5}\le2\Rightarrow A\le3+2=5\)
\(\Rightarrow A_{max}=5\) khi \(x=-2\)
đề thế này á?
\(A=3x^2+12x+\dfrac{17}{x^2}+4x+5\)
Tìm GTLN của: M=-x2+12x+8
Tìm GTNN của: N=a2+9b2+5a-6b-3
Tìm GTNN của: Q=3a2-30a-7
Tìm GTLN của: M=-x2+12x+8
Tìm GTNN của: N=a2+9b2+5a-6b-3
Tìm GTNN của: Q=3a2-30a-7
\(M=-x^2+12x+8=-\left(x-6\right)^2+44\le44\)
\(M_{max}=44\) khi \(x=6\)
\(N=a^2+9b^2+5a-6b=\left(a+\dfrac{5}{2}\right)^2+\left(3b-1\right)^2-\dfrac{41}{4}\ge-\dfrac{41}{4}\)
\(N_{min}=-\dfrac{41}{4}\) khi \(\left(a;b\right)=\left(-\dfrac{5}{2};\dfrac{1}{3}\right)\)
\(Q=3\left(a-5\right)^2-82\ge-82\)
\(Q_{min}=-82\) khi \(a=5\)
tìm gtnn (gtln) của
a) 4x2+12x+1 b) 4x2-3x+10
c)2x2+5x+10 d) x-x2+2
e) 2x-2x2 f) 4x2+2y2+4xy+4y+5
a) \(4x^2+12x+1=\left(4x^2+12x+9\right)-8=\left(2x+3\right)^2-8\ge-8\)
\(ĐTXR\Leftrightarrow x=-\dfrac{3}{2}\)
b) \(4x^2-3x+10=\left(4x^2-3x+\dfrac{9}{16}\right)+\dfrac{151}{16}=\left(2x-\dfrac{3}{4}\right)^2+\dfrac{151}{16}\ge\dfrac{151}{16}\)
\(ĐTXR\Leftrightarrow x=\dfrac{3}{8}\)
c) \(2x^2+5x+10=\left(2x^2+5x+\dfrac{25}{8}\right)+\dfrac{55}{8}=\left(\sqrt{2}x+\dfrac{5\sqrt{2}}{4}\right)^2+\dfrac{55}{8}\ge\dfrac{55}{8}\)
\(ĐTXR\Leftrightarrow x=-\dfrac{5}{4}\)
d) \(x-x^2+2=-\left(x^2-x+\dfrac{1}{4}\right)+\dfrac{9}{4}=-\left(x-\dfrac{1}{2}\right)^2+\dfrac{9}{4}\le\dfrac{9}{4}\)
\(ĐTXR\Leftrightarrow x=\dfrac{1}{2}\)
e) \(2x-2x^2=-2\left(x^2-x+\dfrac{1}{4}\right)+\dfrac{1}{2}=-2\left(x-\dfrac{1}{2}\right)^2+\dfrac{1}{2}\le\dfrac{1}{2}\)
\(ĐTXR\Leftrightarrow x=\dfrac{1}{2}\)
f) \(4x^2+2y^2+4xy+4y+5=\left(4x^2+4xy+y^2\right)+\left(y^2+4y+4\right)+1=\left(2x+y\right)^2+\left(y+2\right)^2+1\ge1\)
\(ĐTXR\Leftrightarrow\) \(\left\{{}\begin{matrix}x=1\\y=-2\end{matrix}\right.\)
a: Ta có: \(4x^2+12x+1\)
\(=4x^2+12x+9-8\)
\(=\left(2x+3\right)^2-8\ge-8\forall x\)
Dấu '=' xảy ra khi \(x=-\dfrac{3}{2}\)
b: Ta có: \(4x^2-3x+10\)
\(=4\left(x^2-\dfrac{3}{4}x+\dfrac{5}{2}\right)\)
\(=4\left(x^2-2\cdot x\cdot\dfrac{3}{8}+\dfrac{9}{64}+\dfrac{151}{64}\right)\)
\(=4\left(x-\dfrac{3}{8}\right)^2+\dfrac{151}{16}\ge\dfrac{151}{16}\forall x\)
Dấu '=' xảy ra khi \(x=\dfrac{3}{8}\)
c: Ta có: \(2x^2+5x+10\)
\(=2\left(x^2+\dfrac{5}{2}x+5\right)\)
\(=2\left(x^2+2\cdot x\cdot\dfrac{5}{4}+\dfrac{25}{16}+\dfrac{55}{16}\right)\)
\(=2\left(x+\dfrac{5}{4}\right)^2+\dfrac{55}{8}\ge\dfrac{55}{8}\forall x\)
Dấu '=' xảy ra khi \(x=-\dfrac{5}{4}\)
Tìm GTLN, GTNN(nếu có):
A=2x2 + 12x + 11
B=-x2 + 18x +19
a: Ta có: \(A=2x^2+12x+11\)
\(=2\left(x^2+6x+\dfrac{11}{2}\right)\)
\(=2\left(x^2+6x+9-\dfrac{7}{2}\right)\)
\(=2\left(x+3\right)^2-7\ge-7\forall x\)
Dấu '=' xảy ra khi x=-3
Tìm GTLN, GTNN(nếu có):
A= 2x2+12x+11
B= -x2 +18x+19
\(A=2\left(x^2+6x+36\right)-61=2\left(x+6\right)^2-61\ge-61\\ A_{min}=-61\Leftrightarrow x=-6\\ B=-\left(x^2-18x+81\right)+100=-\left(x-9\right)^2+100\le100\\ B_{max}=100\Leftrightarrow x=9\)
Tìm GTLn và GTnn
a. \(A=-x^2+12x-7\)
c. \(\text{B}=\frac{1}{-9^2+13x-2019}\)
Biết rằng phương trình 2018 x 2 - 12 x + 1 = 2019 có hai nghiệm phân biệt x 1 , x 2 . Tổng x 1 + x 2 bằng
A. -1
B. 12
C. 2 log 2018 2019
D. 2018
Ta có 2018 x 2 - 12 x + 1 = 2019
Chọn B.
Tìm GTLN của \(A=\sqrt{x-2}+2\sqrt{x+1}+2019-x\)
Xét \(2A=2\sqrt{x-2}+4\sqrt{x+1}+4038-2x\) (Đk:\(x\ge2\))
\(2A=-\left[\left(x-2\right)-2\sqrt{x-2}+1\right]-\left[\left(x+1\right)-4\sqrt{x+1}+2\right]+4042\)
\(2A=-\left(\sqrt{x-2}-1\right)^2-\left(\sqrt{x+1}-2\right)^2+4042\le4042\)
\(\Leftrightarrow A\le2021\)
\(\Rightarrow Amax=2021\) khi x=3 (tm)Tự đăng câu hỏi xong tự trả lời (T-T)