Chứng minh : (3n+1)^2 - 49 chia hết cho 3 với n là số tự nhiên
Chứng minh:
a) ( 3 n - 1 ) 2 - 4 chia hết cho 3 với mọi số tự nhiên n;
b) 100 - ( 7 n + 3 ) 2 chia hết cho 7 với n là số tự nhiên.
a) Ta có: ( 3 n - 1 ) 2 - 4 = (3n - 1 - 2)(3n - 1 + 2) = 3(n - l)(3n + 1).
Do 3(n - 1)(3n + l) chia hết cho 3 với mọi số tự nhiên n, nên ( 3 n - 1 ) 2 - 4 chia hết cho 3 với mọi số tự nhiên n;
b) Ta có: 100 - ( 7 n + 3 ) 2 =(7 - 7n)(13 – 7n) = 7(1 - n)(13 -7n) chia hết cho 7 với n là số tự nhiên.
câu 1 :chứng minh : nn-n^2+n-1 chia hết cho (n-1)^2 với n là số nguyên lớn hơn 1
câu 2 : chứng minh với n lẻ n thuộc N* thì 1^n+2^n+3^n+...+n^n chia hết cho 1+2+3+...+n
câu3: có tồn tại số tự nhiên n để n^2+3n+39 và n^2+n+37 đồng thời chia hết cho 49 không?
Chứng tỏ:
a) ( 3 n + 1 ) 2 - 25 chia hết cho 3 với n là số tự nhiên;
b) ( 4 n + 1 ) 2 - 9 chia hết cho 16 với n là số tự nhiên.
Ta có:
a) ( 3 n + 1 ) 2 - 25 = 3(3n - 4)(n + 2) chia hết cho 3;
b) ( 4 n + 1 ) 2 - 9 = 8(2n - 1)(n +1) chia hết cho 8.
Chứng minh rằng(n2+3n+1)2-1 chia hết cho 24 với n là số tự nhiên.
`(n^2+3n+1)^2-1`
`=(n^2+3n+1)-1^2`
`=(n^2+3n+1+1)(n^2+3n+1-1)`
`=(n^2+3n+2)(n^2+3n)`
`=(n+1)(n+2)n(n+3)`
`=n(n+1)(n+2)(n+3)` là tích của 4 số tự nhiên liên tiếp.
`=> n(n+1)(n+2)(n+3) vdots 24`
Chứng minh rằng : số A =( n + 1 ).(3n + 2) chia hết cho 2 với mọi n là số tự nhiên.
- nếu n là số lẻ ta có (n+1) là số chẵn và (3n+2) là số lẻ nên tích (n+1). (3n+2) là một số chẵn (a) chia hết cho 2
- nếu n là số chẵn ta có (n+1) là số lẻ và (3n+2) là số chẵn nên tích (n+1). (3n+2) là một số chẵn (b) chia hết cho 2
Từ (a) và (b) thì tích (n+1).(3n+2) chia hết cho 2 với mọi N là số tự nhiên
vì trong 1 tích chỉ cần 1 số nhiên chia hết thì cá tích chia hết
vì có (3n + 2) nên cả tích đó chia hết cho 2
Chứng minh rằng :
a) n . ( n + 5 ) hoặc chia hết cho 25 hoặc không chia hết cho 5 với mọi n là các số tự nhiên.
b)( n + 2 ) . ( n + 9 ) hoặc chia hết cho 49 hoặc không chia hết cho 7 với mọi n là các số tự nhiên.
c) n2 + 5n + 4 hoặc chia hết cho 9 hoặc không chia hết cho 3 với mọi n là các số tự nhiên.
a) Nếu n = 5k => n(n+5) = 5k.(5k + 5) = 25k(k+1) chia hết cho 25
Nếu n = 5k +1 => n(n + 5) = (5k + 1).(5k+6) = 5k.5k + 5k.6 + 1.5k + 6 = (25k2 + 35k) + 6 không chia hết cho 5
Nếu n = 5k + 2 => n(n + 5) = (5k + 2)(5k + 7) = (25k2 + 35k + 10k) + 14 không chia hết cho 5
Nếu n = 5k + 3 => n(n + 5) = (5k + 3)(5k + 8) = (25k2 + 55k) + 24 không chia hết cho 5
Nếu n = 5k + 4 => n(n + 5) = (5k + 4).(5k + 9) = (25k2 + 45k + 20k) + 36 không chia hết cho 5
Vậy với mọi n thì n(n+5) hoặc chia hết cho 25 hoặc không chia hết cho 5
b,c tương tự:
AE help giúp mình ạ . cần gấp
1 . tìm 3 số tự nhiên liên tiếp , biết số đầu tiên lẻ và tích của 2 số sau lớn hơn tích 2 số đầu là 104
2 . cho a và b là 2 số tự nhiên . biết a chia cho 5 dư 3 ; b chia cho 5 dư 1 . hỏi tích ab chia cho 5 dư mấy ?
3 . chứng minh biểu thức m(4m-5)-2m(1+2m)
4 chứng minh rằng biểu thức (3n+7)^2 - 49 chia hết cho 3 với mọi số nguyên n
Cảm ơn ạ
AE help giúp mình ạ . cần gấp
1 . tìm 3 số tự nhiên liên tiếp , biết số đầu tiên lẻ và tích của 2 số sau lớn hơn tích 2 số đầu là 104
2 . cho a và b là 2 số tự nhiên . biết a chia cho 5 dư 3 ; b chia cho 5 dư 1 . hỏi tích ab chia cho 5 dư mấy ?
3 . chứng minh biểu thức m(4m-5)-2m(1+2m)
4 chứng minh rằng biểu thức (3n+7)^2 - 49 chia hết cho 3 với mọi số nguyên n
Cảm ơn ạ
1. Chứng minh 2n+5 và 4n+9 là hai số nguyên tố cùng nhau với mọi số tự nhiên n\
2. Tìm số tự nhiên n biết \(\left(3n+5\right)⋮\left(2n+1\right)\)
3 . Cho a+7b chia hết cho 11. Chứng minh rằng 8a+b chia hết cho 11
Mọi người ơi trả lời hộ mình câu 3 nhé. cám ơn nhiều