Cho 1/a+1/b+1/c=3 và 1/a^2+1/b^2+1/c^2=5(abc khác 0).Chứng minh rằng a+b+c=2abc
cho a+b+c=a^2+b^2+c^2 và a,b,c khác 0 chứng minh rằng 1/a^2+1/b^2+1/c^2=3/abc
Bài 4 cho (a2-bc)(b-abc)=(b2-ac)(a-abc); abc khác 0 và a khác b
Chứng minh rằng 1/a + 1/b + 1/c = a+b+c
Cho ( a+b+c )^2 = a^2 + b^2 + c^2 và a,b,c khác 0. Chứng minh rằng 1/a^3 + 1/b^3 + 1/c^3 = 3/abc
AI LÀM NHANH NHẤT MÌNH LIKE CHO
nhầm làm lại nha ^^
(a+b+c)^2=a^2+b^2+c^2
=>a^2+b^2+c^2+2ab+2bc+2ac=a^2+b^2+c^2
=>2(ab+bc+ac)=0
=>ab+bc+ac=0
=>(ab+bc+ac)/abc=0
=>ab/abc+bc/abc+ac/abc=0
=>1/c+1/a+1/b=0
=> 1/a+1/b=-1/c
=> (1/a+1/b)^3=(-1/c)^3
=> 1/a^3+1/b^3+3/ab(1/a+1/b)=-1/c^3
=> 1/a^3+1/b^3+1/c^3+3/ab.(-1/c)=0
=> 1/a^3+1/b^3+1/c^3-3/abc=0
=> 1/a^3+1/b^3+1/c^3=3/abc (đpcm)
(a+b+c)^2=a^2+b^2+c^2
a^2+b^2+c^2+2ab+2bc+2ac=a^2+b^2+c^2
2(ab+bc+ac)=0
ab+bc+ac=0
(ab+bc+ac)/abc=0
ab/abc+bc/abc+ac/abc=0
1/c+1/a+1/b=0
=> 1/a+1/b=-1/c
=> (1/a+1/b)^3=(-1/c)^3
=> 1/a^3+1/b^3+3.(1/a.)(1/b).(1/a+1/b)=-1/c^3
=> 1/a^3+1/b^3+1/c^3.3ab.(-1/c)=0
=> 1/a^3+1/b^3+1/c^3=3/abc
Cho a, b, c > 0. Chứng minh rằng: \(\frac{1}{a^2+bc}+\frac{1}{b^2+ac}+\frac{1}{c^2+ab}\text{ ≤ }\frac{a+b+c}{2abc}\)
Ta có: \(a^2+bc\ge2\sqrt{a^2bc}=2a\sqrt{bc}\)\(\Rightarrow\frac{1}{a^2+bc}\le\frac{1}{2a\sqrt{bc}}\)
Tương tự ta có:
\(\frac{1}{b^2+ac}\le\frac{1}{2b\sqrt{ac}};\frac{1}{c^2+ab}\le\frac{1}{2c\sqrt{ab}}\)
Cộng theo vế ta có:
\(\frac{1}{a^2+bc}+\frac{1}{b^2+ac}+\frac{1}{c^2+ab}\le\frac{1}{2a\sqrt{bc}}+\frac{1}{2b\sqrt{ac}}+\frac{1}{2c\sqrt{ab}}\)
\(\Leftrightarrow\frac{1}{a^2+bc}+\frac{1}{b^2+ac}+\frac{1}{c^2+ab}\le\frac{\sqrt{bc}}{2abc}+\frac{\sqrt{ac}}{2abc}+\frac{\sqrt{ab}}{2abc}\)
\(\Leftrightarrow\frac{1}{a^2+bc}+\frac{1}{b^2+ac}+\frac{1}{c^2+ab}\le\frac{\sqrt{bc}+\sqrt{ac}+\sqrt{ab}}{2abc}\le\frac{a+b+c}{2abc}\)
Đẳng thức xảy ra khi \(a=b=c\)
A, cho abc = 1 và a+b+c = 1/a +1/b +1/c. Chứng minh tồn tại một trong 3 số a,b,c bằng 1
B, chứng minh rằng nếu a + b + c = n và 1/a + 1/b + 1/c = 1/n thì tồn tại một trong ba số bằng n
C, chứng minh rằng nếu 3 số a,b,c khác 0 thì thỏa mãn đẳng thức
a2 -- b2 / ab + b2 -- c2 /bc + c2 -- a2/ca =0
thì tồn tại hai số bằng nhau
Cho a, b, c là các số khác 0. Chứng minh rằng trong các biểu thức sau có ít nhất 1 biểu thức coa giá trị âm: M = a^2 - 3abc - 2b^2; N = b^2 + abc - 4c^2; P = 3c^2 + 2abc - 2a^2
Ta có : Tổng của 3 số luôn âm khi ít nhất 1 trong 3 thừa số có giá trị âm
Ta tính tổng của 3 đa thức đó thì sẽ ra 1 đa thức có giá trị âm (tự tính nhé ,nó sẽ ra kết quả là 1 đa thức có giá trị âm nếu bạn tính đúng ,hoặc duong nếu bạn tính sai hoặc đề bài có vấn đề ) thế rồi bạn suy ra luôn điều phải chứng mminh nha . Cô dạy bọn mk làm thế mà ,,chắc chắn đúng nhé
Cho a,b,c >0. Chứng minh rằng
\(\dfrac{1}{a^2+bc}+\dfrac{1}{b^2+ac}+\dfrac{1}{c^2+ab}\le\dfrac{a+b+c}{2abc}\)
Cho 0 ≤a;b;c ≤2 và a-b;b-c;c-a khác 0. Chứng minh rằng: 1/(a-b)^2 + 1/(b-c)^2 +1/(c-a)^2 ≥9/4
cho a;b;c khác 0 và 1/a+1/b+1/c=0.Chứng minh rằng 1/a3+1/b3+1/c3=3/abc