Cho tam giác MNP vuông tại M , P = 60 độ . Tia phân giác P cắt MN tại Q
A : Chứng minh tâm giác PMQ =PRQ
B: Tính số đo góc RQN
C: Kẻ vuông góc PM . Chứng minh MK // QR
Cho tam gác MNP vuông tại M ,P= 60 độ .Tia phân giác P cắt MN tại Q
a Chứng minh tam giác PMQ= PRQ
b Tính số đo góc RQN
c Kẻ MR vuông góc PM . Chứng minh MK // QR
đề có vấn đề cần xem lại đề :))
Cho tam giác MNP vuông tại M;Góc p= 60 độ.Tia p/g góc P cắt MN tại Q. a,Chứng minh tam giác PMQ =tam giác PRQ.b,Tính số đo RQN. c,kẻ MR vuông góc PM:C/m Mk//QR
ủa R ở đâu thế
Cho tam giác MNP vuông tại M, có góc N= 60 độ và MN = 4cm. Tia phần giác của góc N cắt MK tại H. Kẻ EH vuông góc với Nk tại E. a) Chứng minh tam giác MNH = tam giác ENH b) Chứng minh tam giác MNE là tam giác đều c) Tính độ dài cạnh Nk
a: Xét ΔNMH vuông tại M và ΔNEH vuông tại E có
NH chung
góc MNH=góc ENH
=>ΔNMH=ΔNEH
b: Xét ΔNME có NM=NE và góc MNE=60 độ
nên ΔMNE đều
Cho tam giác MNP vuông tại M, góc N= 60 độ , MN= 5cm. Tia phân giác góc N cắt MP tại D, từ D kẻ đường thẳng vuông góc với MN tại E
a) Chứng minh tam giác NMD= tam giác NED
b) Chứng minh tam giác MND là tam giác đều
DM⊥NM mà em
Đề phải là từ D kẻ đường thẳng vuông góc với NP tại E chứ em
Cho tam giác MNP vuông tại P . Phân giác góc M cắt NP tại A . Từ A kẻ AH vuông góc với MN a CHỨNG MINH PM bằng MH b MP cắt AH tại B CHỨNG MINH tam giác MNP bằng tam giác MBH
a: Xét ΔMPA vuông tại P và ΔMHA vuông tại H có
MA chung
\(\widehat{PMA}=\widehat{HMA}\)
Do đó: ΔMPA=ΔMHA
Suy ra: MP=MH
b: Xét ΔMNP vuông tại P và ΔMBH vuông tại H có
MP=MH
\(\widehat{PMN}\) chung
Do đó: ΔMNP=ΔMBH
7:Cho tam giác MNP vuông tại M ( ) MP MN . Kẻ tia phân giác của góc N cắt PM tại I. Từ P hạ đoạn thẳng PK vuông góc với tia phân giác NI ( K thuộc tia NI). a) Chứng minh MNI KPI ∽ ; b) Chứng minh INP IPK = ; c) Cho MN = 3cm, MP = 4cm. Tính IM.
Cho tam giác MNP vuông góc tại M, MN = 4cm, góc N = 60o. Tia phân giác góc N cắt MP tại D. Kẻ DE vuông góc với NP tại E.
a) Chứng minh tam giác END = tam giác MND
b) Chứng minh tam giác MNE đều
c) Tính cạnh NP, MP
a)
Xét tam giác END và tam giác MND, có
\(\widehat{MND}=\widehat{DNE}=30^o\)(vì ND là tia phân giác)
\(\widehat{M}=\widehat{E}=90^o\)
ND là cạnh chung
\(\Rightarrow\Delta END=\Delta MND\)
\(\RightarrowĐPCM\)
Cho tam giác MNP vuông tại M, có N = 60 độ và MN = 8cm. Tia phân giác của góc N cắt MP tại K. Kẻ KQ vuông góc với NP tại Q.
a) Chứng minh △MNK = △QNK.
b) Xác định dạng của tam giác MNQ và NKP.
c) Tính độ dài cạnh MQ, QP
a) Xét \(\Delta MNK\left(\widehat{M}=90^o\right)\) và \(\Delta QNK\left(\widehat{Q}=90^o\right)\) có:
\(\widehat{MNK}=\widehat{QNK}\) (giả thiết)
\(NK\) là cạnh chung
\(\Rightarrow\Delta MNK=\Delta QNK\left(ch.gn\right)\)
b) Vì \(\Delta MNK=\Delta QNK\left(cmt\right)\)
\(\Rightarrow MN=QN\) (\(2\) cạnh tương ứng)
\(\Rightarrow\Delta MNQ\) cân tại \(N\)
Mà \(\widehat{MNQ}=60^o\)
\(\Rightarrow\Delta MNQ\) đều
Vì \(NK\) là tia phân giác \(\widehat{MNP}\) (giả thiết)
\(\Rightarrow\widehat{MNK}=\widehat{QNK}=\dfrac{\widehat{MNP}}{2}=\dfrac{60^o}{2}=30^o=\widehat{NPK}\)
\(\Rightarrow\Delta NKP\) cân tại \(K\)
c) Vì \(\Delta NMQ\) đều (chứng minh trên)
\(\Rightarrow NM=MQ=NQ=8cm\)
Xét \(\Delta NMP\left(\widehat{M}=90^o\right)\) có:
\(PN=2MN=2.8=16cm\)
\(\Rightarrow PQ=16-8=8cm\)
a: Xét ΔMNK vuông tại M và ΔQNK vuông tại Q có
NK chung
\(\widehat{MNK}=\widehat{QNK}\)
Do đó: ΔMNK=ΔQNK
b: Ta có: ΔMNK=ΔQNK
nên NM=NQ
=>ΔNMQ cân tại N
mà \(\widehat{MNQ}=60^0\)
nên ΔMNQ đều
Xét ΔNKQ có
\(\widehat{KPN}=\widehat{KNP}\)
nên ΔNKQ cân tại K
c: Xét ΔMNP vuông tại M có
\(\cos N=\dfrac{MN}{NP}\)
=>NP=16(cm)
=>\(MP=8\sqrt{3}\left(cm\right)\)
cho tam giác MNP vuông tại M có MN = 4cm , MP =3cm
a, Tính NP và so sánh các góc trong tam giác MNP
b , Trên Tia đối của PM lấy A sao cho P là trung điểm của AM . Qua P dựng đường thẳng vuông góc với AM cắt AN tại C . Chứng minh tam giác CPM = tam giác CPA
c ,Chứng minh CM = CN
d , Gọi G là giao điểm của MC và NP. Tính NG
e ,Từ A kẻ đường thẳng vuông góc với đường thẳng NP tại D . Vẽ tia Nx là tia phân giác của góc MNP . Vẽ tia Ay là phân giác góc PaD . Tia Ay cắt các tia NP , Nx ,NM lần lượt tại E ,H ,K . Chứng minh tam giác NEK cân
a) xét \(\Delta MNP\)VUÔNG TẠI M CÓ
\(\Rightarrow NP^2=MN^2+MP^2\left(PYTAGO\right)\)
THAY\(NP^2=4^2+3^2\)
\(NP^2=16+9\)
\(NP^2=25\)
\(\Rightarrow NP=\sqrt{25}=5\left(cm\right)\)
XÉT \(\Delta MNP\)CÓ
\(\Rightarrow NP>MN>MP\left(5>4>3\right)\)
\(\Rightarrow\widehat{M}>\widehat{P}>\widehat{N}\)( QUAN HỆ GIỮA CẠNH VÀ GÓC ĐỐI DIỆN)
B) xét \(\Delta\text{ CPM}\)VÀ\(\Delta\text{CPA}\)CÓ
\(PM=PA\left(GT\right)\)
\(\widehat{MPC}=\widehat{APC}=90^o\)
PC LÀ CAH CHUNG
=>\(\Delta\text{ CPM}\)=\(\Delta\text{CPA}\)(C-G-C)
c)
\(\Delta CPM=\Delta CPA\left(cmt\right)\)
\(\Rightarrow\widehat{CMP}=\widehat{CPA}\left(\text{hai góc tương ứng}\right)\)
\(\text{Ta có: }\)\(\widehat{MNA}+\widehat{NAM}=90^o\left(\Delta MNA\perp\text{ tại M}\right)\)
\(\widehat{NMC}+\widehat{CMP}=90^o\)
\(\Rightarrow\widehat{MNA}+\widehat{NAM}=\)\(\widehat{NMC}+\widehat{CMP}\)
\(\Rightarrow\widehat{MNA}=\widehat{NMC}\left(\widehat{CMP}=\widehat{NAM}\right)\)
\(Hay:\)\(\widehat{MNC}=\widehat{NMC}\)
\(\Rightarrow\Delta NMC\text{ cân}\)
\(\Rightarrow CN=CM\left(đpcm\right)\)
d)\(\Delta AMC\)CÂN\(\Rightarrow AC=MC\)
\(\Delta MCN\)CÂN\(\Rightarrow MC=CN\)
=> AC=CN
=> AC LÀ TRUNG TUYẾN CỦA \(\Delta MAN\)
MÀ MP=AP => NP LÀ TRUNG TUYẾN CỦA\(\Delta MAN\)
HAI ĐƯOG TRUNG TUYẾN NÀY CẮT NHAU TẠI G
=> G LÀ TROG TÂM CỦA \(\Delta MAN\)
\(\Rightarrow NG=\frac{2}{3}NP\)
THAY \(\Rightarrow NG=\frac{2}{3}.5=\frac{10}{3}\approx3,3\left(cm\right)\)