DM⊥NM mà em
Đề phải là từ D kẻ đường thẳng vuông góc với NP tại E chứ em
DM⊥NM mà em
Đề phải là từ D kẻ đường thẳng vuông góc với NP tại E chứ em
Cho tam giác MNP vuông góc tại M, MN = 4cm, góc N = 60o. Tia phân giác góc N cắt MP tại D. Kẻ DE vuông góc với NP tại E.
a) Chứng minh tam giác END = tam giác MND
b) Chứng minh tam giác MNE đều
c) Tính cạnh NP, MP
cho tam giac MNP vuông tại M( MN>MP). trên cạnh NP lấy điểm E sao cho NE = NM, qua E kẻ đừơng thăng vuông góc với NP cắt MP tại D
a) chứng minh tam giác MND = tam giác END và ND phân giác của MNP
b) trên tia đối của tia MN, lấy điểm F sao cho MF = DP chứng minh tam giác MDF= tam giác EDP
c) minh 3 điểm E , D , F thẳng hàng
d) chứng m ND vuông góc với CF
cho tam giác MNP vuông tại m có N = 60 độ và MN = 7cm tia phân giác của góc N cắt MP tại D kẻ DE vuông góc vs NP tại E
a) c/m tam giác NMD = tam giác NDE
b) c/m tam giác MNE là tam giác đều
c)NP = ?
Cho tam giác MNP vuông tại M, có góc N= 60 độ và MN = 4cm. Tia phần giác của góc N cắt MK tại H. Kẻ EH vuông góc với Nk tại E. a) Chứng minh tam giác MNH = tam giác ENH b) Chứng minh tam giác MNE là tam giác đều c) Tính độ dài cạnh Nk
Câu 7. Cho tam giác MNP cân tại M. Tia phân giác của góc NMP cắt NP tại A.
a) Chứng minh tam giác AMN = tam giác AMP.
b) Kẻ AB vuông góc với MN, AC vuông góc với MP. Chứng minh tam giác ABC
cân.
c) Chứng minh AM vuông góc với BC
d) Kẻ BD vuông góc với NA tại D. Gọi E là giao điểm của đường thẳng BD và MP.
Chứng minh M là trung điểm của CE.
Cho tam giác MNP cân tại M ( góc M <90 độ). Kẻ NH vuông góc với MP ( H thuộc MP), PK vuông góc với MN ( K thuộc MN). NH và PK cắt nhau tại E.
a) chứng minh tam giác NHP= tam giác PKN.
b) chứng minh tam giác ENP cân.
c) Chứng minh ME là đường phân giác của góc NMP.
Cho tam giác MNP có MN = 6cm, MP = 8cm cm, NP = 10 cm.
a) Chứng minh tam giác MNP là tam giác vuông
b) Vẽ tia phân giác góc N cắt MP tại D, từ D vẽ DE vuông góc với ND. Chứng minh DM = DE
c) ED cắt MN tai F. Chứng minh tam giác MDF = tam giác EDP
Cho tam giác MNP có MN=3cm MP= 4cm NP=5cm a, Chứng tỏ rằng tam giác MNP vuông tại M b, vẽ tia phân giác ND(D thuộc MP) từ D vẽ DE vuông góc với NP (E thuộc NP) chứng minh DM=DE c, ED cắt MN tại F chứng minh DE
1. Cho tam giác MNP cân tại M vẽ MH thuộc NP (H thuộc NP)
a) Chứng minh NH = PH
b) Cho MH = 4 cm; NH = 3 cm. Tính MN
2. Cho tam giác MNP vuông tại M, có góc N = 60o và MN = 5 cm. Tia phân giác của góc N cắt MP tại D. Kẻ DE vuông góc với PN tại E
a) Chứng minh: tam giác MNP = tam giác END
b) Chứng minh: tam giác MNE là tam giác đều
c) Tính độ dài cạnh PN
3. Cho tam giác MNP cân tại M, góc M = 30o; NP = 2 cm. Trên cạnh MP lấy điểm Q sao cho góc PNQ = 60o. Tính độ dài MQ