tim x va y thuoc z
a,3x - xy + 6y = 4
b,x^2 - 3xy + 2x - 6y = 7
tim x , y thuoc Z biet
a , 3x-xy+6y=4
b,x^2-3xy=2x-6y=7
TÌM X,Y
x^2-3xy+6y=10
2x^2-5xy+3x-y+7=0
Tìm bậc của các đa thức sau:
a) \(x^3y^3+6x^2y^2+12xy-8
\)
b) \(x^2y+2xy^2-3x^3y+4xy^5\)
c) \(x^6y^2+3x^6y^3-7x^5y^7+5x^4y\)
d) \(2x^3+x^4y^5+3xy^7-x^4y^5+10-xy^7\)
e) \(0,5x^2y^3+3x^2y^3z^3-a.x^2y^3-x^4-x^2y^3\) với a là hằng số
a, bậc 6
b, bậc 6
c, bậc 12
d, bậc 9
e, bậc 8
1) thực hiện các phép tính sau
a) 3x - 5/ 7+ 4x+ 5/7
b) 5xy - 4x/2x^2y^3 + 3xy+ 4y/2x^2y^3
c) x+1/X-5+x-18/x-5+x+2/x-5
2)
a) 2/x+3 + 1/x
b) x+1/2x-2+(-2x)/x^2-1
c) y - 12/6y- 36+ 6/ y^2- 6y
d) 6y/x+3x+3/2x+6
Tìm x, y biết:
a) (x-1)(y+2)=7
b)x(y - 1) + y = 4
c) xy - 2x + y = 4
d)x^2 - 3xy + 2x - 6y = 5
`@` `\text {Ans}`
`\downarrow`
`a)`
`(x-1)(y+2)=7`
`=> (x - 1)(y + 2) \in` Ư`(7) = {7; 1; -1; -7}`
Ta có bảng sau:
`x - 1` | `7` | `1` | `-1` | `-7` |
`y + 2` | `1` | `7` | `-7` | `-1` |
`x` | `8` | `2` | `0` | `-6` |
`y` | `-1` | `5` | `-9` | `-3` |
Vậy, ta có cặp `(x; y)` thỏa mãn `{-1; 8}; {2; 5}; {-9; 0}; {-6; -3}`
`b)`
`x(y - 1) + y = 4`
`=> x(y - 1) + y - 4 = 0`
`=> x(y - 1) + (y - 1) - 3 = 0`
`=> (x + 1)(y - 1) = 3`
`=> (x + 1)(y - 1) \in` Ư`(3) = {-1; -3; 1; 3}`
Ta có bảng sau:
`x + 1` | `1` | `3` | `-1` | `-3` |
`y - 1` | `3` | `1` | `-3` | `-1` |
`x` | `0` | `2` | `-2` | `-4` |
`y` | `4` | `2` | `-2` | `0` |
Vậy, ta có cặp `(x; y)` thỏa mãn `{0; 4}; {2; 2}; {-2; -2}; {-4; 0}`
Phân tích đa thức 3\(x^2\)y + 6\(xy^2\) – 9xy thành nhân tử. Kết quả là:
A. 3(\(x^2y\) + 2\(xy^2\) – 3xy - 3). B. 3y(\(x^2\) + 2xy – 3x). C. xy(3x + 6y - 9). D. 3xy(x + 2y – 3).
tim x y z x/2=y/3 y/4=z/5 va x^2-y^2=16
3x/8=3y/6y=3z/216 va 2x^2+2y^2-z^2=1
a) \(\frac{x}{2}=\frac{y}{3}\) \(\frac{y}{4}=\frac{z}{5}\)và x2-y2=16
Ta có: \(\frac{x}{2}=\frac{y}{3}\Rightarrow\frac{x}{4}=\frac{y}{12}\)(1)
\(\frac{y}{4}=\frac{z}{5}\Rightarrow\frac{y}{12}=\frac{z}{15}\)(2)
Từ (1) và (2) => \(\frac{x}{4}=\frac{y}{12}\)
=> \(\frac{x}{4}=\frac{y}{12}\Rightarrow\frac{x^2}{16}=\frac{y^2}{154}\)
Áp dụng tính chất dãy tỉ số bằng nhau
\(\frac{x^2}{16}=\frac{y^2}{154}=\frac{x^2-y^2}{16-154}=\frac{16}{-138}=\frac{8}{69}\)
Đến đây làm nốt
should a person làm sai rồi, cách làm thì đúng nhưng nhân sai thì phải, cẩn thận nha =)
\(\frac{x}{2}=\frac{y}{3}=>\frac{x}{8}=\frac{y}{12}\)
\(\frac{y}{4}=\frac{z}{5}=>\frac{y}{12}=\frac{z}{15}\)
\(=>\frac{x}{8}=\frac{y}{12}=\frac{z}{15}=>\frac{x^2}{64}=\frac{y^2}{144}=\frac{z^2}{225}\)
áp dụng t/c dãy tỉ sô bằng nhau ta có:
\(\frac{x^2}{64}=\frac{y^2}{144}=\frac{z^2}{225}=\frac{x^2-y^2}{64-144}=\frac{16}{-80}=-\frac{1}{5}\)
\(x^2=\frac{1}{5}.64=\frac{64}{5}=>x=\sqrt{\frac{64}{5}}\)
tương tự y và z nha
Tìm STN x,y biết:
a) (x + 5)(y - 3) =8
b) 2xy + y + 2x = 7
c) xy - 4x + 2y = 11
d) 3xy + x - 6y + 5 = 12
tim x.y thuoc N a)3xy-y+2x=1 b)xy+4y+x=2
a) \(3xy-y+2x=1\)
\(\Leftrightarrow y=\dfrac{1-2x}{3x-1}\)
\(\Leftrightarrow3y=\dfrac{3-6x}{3x-1}=-2+\dfrac{1}{3x-1}=P\)
Để x;y thuộc N thì \(\left(3x-1\right)\inƯ\left(1\right)\)
\(\Leftrightarrow\left(3x-1\right)\in\left\{-1;1\right\}\)
\(\Leftrightarrow x\in\left\{0;\dfrac{2}{3}\right\}\)
loại \(x=\dfrac{2}{3}\)
\(x=0\Rightarrow P=-3=3y\Rightarrow y=-1\left(-1\notin N\right)\)
loại x=0
Vậy không tồn tại x,y để \(3xy-y+2x=1\)
b)\(xy+4y+x=2\)
\(y=\dfrac{2-x}{x+4}=-1+\dfrac{6}{x+4}\)
Để x;y thuộc N thì \(\left(x+4\right)\inƯ\left(6\right)\)
\(\Leftrightarrow\left(x+4\right)\in\left\{-6;-3;-2-1;1;2;3;6\right\}\)
\(\Leftrightarrow x\in\left\{-10;-7;-6-5;-3;-2;-1;2\right\}\)
vì \(x\in N\) nên nhận x=2
x=2 \(\Rightarrow y=0\left(\in N\right)\)
nhận x=2
vậy vậy x=2 và y=0 thì \(xy+4y+x=2\)