Tìm giá trị nhỏ nhất của biểu thức sau: A=/2017-x/+/x-2018/
Tìm giá trị nhỏ nhất của biểu thức A= |x-2017| + x-2018
Ta có: \(A=|x-2017|+x-2018\)
\(\Rightarrow A=|2017-x|+x-2018\)
\(\Rightarrow A\ge2017-x+x-2018=-1\)
Dấu " = " xảy ra \(\Leftrightarrow x\le2017\)
Vì \(|x-2017|\)\(\ge\) \(0\)\(\forall x\)
=> A\(\ge x-2018\forall x\)
Dấu " = " xảy ra khi \(|x-2017|\)=0
=> x= 2017
thiếu rồi bổ sung thêm: vậy A nhỏ nhất khi x=2017
Khi đó A=-1
Tìm giá trị nhỏ nhất của biểu thức sau : \(A=\frac{|x-2016|+2017}{|x-2016|+2018}\)
\(A=\frac{\left|x-2016\right|+2017}{\left|x-2016\right|+2018}\)
\(A=\frac{\left|x-2016\right|+2018}{\left|x-2016\right|+2018}-\frac{1}{\left|x-2016\right|+2018}\)
\(A=1-\frac{1}{\left|x-2016\right|+2018}\ge1-\frac{1}{2018}=\frac{2017}{2018}\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(\left|x-2016\right|=0\)
\(\Leftrightarrow\)\(x=2016\)
Vậy GTNN của \(A\) là \(\frac{2017}{2018}\) khi \(x=2016\)
Chúc bạn học tốt ~
Tìm giá trị của a để biểu thức sau có giá trị
lớn nhất:
(2015 x 2016 x 2017 x 2018): (2018 - a)
tìm giá trị nhỏ nhất của biểu thức A=|x-2016|+2017/|x-2016|+2018
Tìm giá trị nhỏ nhất hoặc lớn nhất của các biểu thức sau :
a) \(A=\left|x-2017\right|+\left|x-2018\right|\)
b) \(B=\dfrac{x^2+12}{x^2+4}\)
a, \(A=\left|x-2017\right|+\left|2018-x\right|\ge\left|x-2017+2018-x\right|=1\)
Vậy \(Min=1\Leftrightarrow2017\le x\le2018\)
b, \(B=\dfrac{x^2+4+8}{x^2+4}=1+\dfrac{8}{x^2+4}\)
Thấy : \(x^2+4\ge4\)
\(\Rightarrow B=1+\dfrac{8}{x^2+4}\le3\)
Vậy \(Max=3\Leftrightarrow x=0\)
tìm giá trị nhỏ nhất của biểu thức a= /x-2016/+2017 phần /x-2016/+2018
\(A=\frac{\left|x-2016\right|+2017}{\left|x-2016\right|+2018}=\frac{\left|x-2016\right|+2018-1}{\left|x-2016\right|+2018}=1-\frac{1}{\left|x-2016\right|+2018}\)
để A nhỏ nhất => \(\frac{1}{\left|x-2016\right|+2018}\)lớn nhất => |x-2016|+2018 nhỏ nhất
\(\left|x-2016\right|\ge0\Rightarrow\left|x-2016\right|+2018\ge2018\)
dấu = xảy ra khi |x-2016|=0
=> x=2016
Vậy Min A=\(\frac{2017}{2018}\)khi x=2016
ps: sai sót bỏ qua
Tìm giá trị nhỏ nhất của biểu thức C=\(\dfrac{\left|x-2017\right|+2018}{\left|x-2017\right|+2019}\)
\(C=\dfrac{\left|X-2017\right|+2018}{\left|X-2017\right|+2019}=\dfrac{\left(\left|X-2017\right|+2019\right)-1}{\left|X-2017\right|+2019}=1-\dfrac{1}{\left|X-2017\right|+2019}\)
\(\text{Biểu thức C đạt giá trị nhỏ nhất khi }\left|x-2017\right|+2019\text{ có giá trị nhỏ nhất}\)
\(\text{Mà }\left|x-2017\right|\ge0\text{ nên }\left|x-2017\right|+2019\ge2019\)
\(\text{Dấu "=" xảy ra khi }x=2017\Rightarrow C=\dfrac{2018}{2019}\)
\(\text{Vậy giá trị nhỏ nhất của C là }\dfrac{2018}{2019}\text{ khi }x=2017\)
Bài 2: tìm giá trị nhỏ nhất của biểu thức
a, A= 3,7 + | 4,3 - x |
b, B= | 3x + 8,4 | - 14
c, C= | 4x - 3 | + | 5y + 7,5 | + 17,5
d, D= | x - 2018 | + | x - 2017 |
Bài 2: tìm giá trị nhỏ nhất của biểu thức
a, A= 3,7 + | 4,3 - x |
b, B= | 3x + 8,4 | - 14
c, C= | 4x - 3 | + | 5y + 7,5 | + 17,5
d, D= | x - 2018 | + | x - 2017 |
Bài 2 :
a) \(A=3,7+\left|4,3-x\right|\ge3,7\)
Min A = 3,7 \(\Leftrightarrow x=4,3\)
b) \(B=\left|3x+8,4\right|-14\ge-14\)
Min B = -14 \(\Leftrightarrow x=\frac{-14}{5}\)
c) \(C=\left|4x-3\right|+\left|5y+7,5\right|+17,5\ge17,5\)
Min C = 17,5 \(\Leftrightarrow\hept{\begin{cases}x=\frac{3}{4}\\y=\frac{-3}{2}\end{cases}}\)
d) \(D=\left|x-2018\right|+\left|x-2017\right|\)
\(D=\left|2018-x\right|+\left|x-2017\right|\ge\left|2018-x+x-2017\right|=1\)
Min D =1 \(\Leftrightarrow\left(2018-x\right)\left(x-2017\right)\ge0\)
\(\Leftrightarrow2017\le x\le2018\)
\(A=3,7+\left|4,3-x\right|\)
Ta có \(\left|4,3-x\right|\ge0\Leftrightarrow A=3,7+\left|4,3-x\right|\ge3,7\)
Dấu '' = '' xảy ra \(\Leftrightarrow\left|4,3-x\right|=0\Leftrightarrow4,3-x=0\Leftrightarrow x=4,3\)
\(B=\left|3x+8,4\right|-14\)
Ta có \(\left|3x+8,4\right|\ge0\Leftrightarrow B=\left|3x+8,4\right|-14\ge-14\)
Dấu '' = '' xảy ra \(\Leftrightarrow\left|3x+8,4\right|=0\Leftrightarrow3x=-8,4\Leftrightarrow x=2,8\)
\(C=\left|4x-3\right|+\left|5y+7,5\right|+17,5\)
Ta có \(\hept{\begin{cases}\left|4x-3\right|\ge0\\\left|5y+7,5\right|\ge0\end{cases}}\Leftrightarrow C=\left|4x-3\right|+\left|5y+7,5\right|+17,5\ge17,5\)
Dấu '' = '' xảy ra \(\Leftrightarrow\hept{\begin{cases}\left|4x-3\right|=0\\\left|5y+7,5\right|=0\end{cases}}\Leftrightarrow\hept{\begin{cases}4x-3=0\\5y+7,5=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{3}{4}\\y=-1,5\end{cases}}\)
\(D=\left|x-2018\right|+\left|x-2017\right|\)
\(\Leftrightarrow D=\left|x-2018\right|+\left|2017-x\right|\)
Áp dụng bất đẳng thức \(\left|A\right|+\left|B\right|\ge\left|A+B\right|\)ta có
\(D\ge\left|x-2018+2017-x\right|=\left|-1\right|=1\)
Dấu '' = '' xảy ra \(\Leftrightarrow\left(2017-x\right)\left(x-2018\right)\ge0\Leftrightarrow2018\ge x\ge2017\)
Tìm giá trị nhỏ nhất của biểu thức
P=GTTD(x-1)+GTTD(x-2017)+GTTD(x-2018)
tìm giá trị nhỏ nhất của biểu thức A=\(\frac{\left|x-2016\right|+2017}{\left|x-2106\right|+2018}\)