Cho G và G' lần lượt là trọng tâm của tam giác ABC và A'B'C' Tính tổng vecto AA'+BB'+CC'
cho 2 tam giác đều abc và a'b'c' có chung trọng tâm g. Gọi x,y,z lần lượt là trung điểm aa',bb',cc'. CMR: tam giác xyz cũng là tam giác đều và có trọng tâm g
cho 2 tam giác đều abc và a'b'c'. Gọi x,y,z lần lượt là trung điểm của aa', bb', cc'. Chứng minh rằng tam giác xyz cũng là tam giác đều và có trọng tâm là g
chưa học trả lời làm gì cho mất thời gian mất công bạn Thanh Trang Hoàng phải đọc
Chứng minh rằng nếu G và G' lần lượt là trọng tâm của các tam giác ABC và A'B'C' thì \(3\overrightarrow{GG'}=\overrightarrow{AA'}+\overrightarrow{BB'}+\overrightarrow{CC'}\) ?
Từ các đỉnh của tam giác ABC ta kẻ các đoạn thẳng AA', BB', CC' song song cùng chiều, bằng nhau và không nằm trong mặt phẳng của tam giác. Gọi I, G và K lần lượt là trọng tâm của các tam giác ABC, ACC', A'B'C'.
a) Chứng minh (IGK) // (BB′CC′).
b) Chứng minh rằng (A′GK) // (AIB′).
Gọi M và M’ tương ứng là trung điểm của AC và A’C’, ta có:
I ∈ BM, G ∈ C′M, K ∈ B′M′
Theo tính chất trọng tâm của tam giác ta có:
Ta có :
Mặt khác IG và IK ⊂ (IGK) nên (IGK) // (BB′C′C)
b) Gọi E và F tương ứng là trung điểm của BC và B’C’, O là trung điểm của A’C. A, I, E thẳng hàng nên (AIB’) chính là (AEB’). A’, G, C thẳng hàng nên (A’GK) chính là (A’CF).
Ta có B′E // CF (do B’FCE là hình bình hành ) và AE // A′F nên (AIB′) // (A′GK).
Cho tam giác ABC, trên cạnh kéo dài của tam giác ABC lấy AA' = AB, BB'=BC, CC' = AC. Chứng minh trọng tâm tam giác ABC và A'B'C trùng nhau. (không dùng vecto nha).
- Gọi G là trọng tâm \(\Delta ABC\), trung tuyến BE cắt A'C tại E'.
- Gọi trung điểm B'C' là D'. BE và D'C là đường trung bình của \(\Delta CAB'\)và \(\Delta C'AB'\)
=> BE // D'C và BE = D'C
Trung tuyến AD là đường trung bình của \(\Delta BCA'\Rightarrow GE'=BG=\frac{2}{3}\cdot BE=\frac{2}{3}\cdot D'C\)
Gọi G' là giao của A'D' và BE' ta có:
Áp dụng định lí Talet:
\(\frac{G'E'}{D'C}=\frac{A'E'}{A'C}=\frac{AG}{AD}=\frac{2}{3}\) (AD // A'C do là đường trung bình của \(\Delta BA'C\))
\(\Rightarrow G'E'=\frac{2}{3}\cdot D'C\)
=> G'E' = GE'.
Do G và G' cùng nằm trên BE' và G, G' nằm cùng phía so với E' nên G và G' trùng nhau.
Như vậy trung tuyến A'D' đi qua G, tương tự trung tuyến B'M' cũng đi qua G
=> G là trọng tâm của \(\Delta A'B'C'\)
"Nếu G là trọng tâm \(\Delta ABC\) thì vtGA + vtGB + vtGC = vt0"
Gọi giao của AG và BC là D. Trên AD kéo dài lấy E sao cho
DE = DG => GE = GA => vtGE = - vtGA.
Do GE và BC cắt nhau tại trung điểm D của chúng nên BGCE là hình bình hành
=> vtGB + vtGC = vtGE = -vtGA => vtGA + vtGB + vtGC = vt0
Gọi G là trọng tâm ABC, G' là trọng tâm \(\Delta A'B'C'\)
=> vtGA + vtGB + vtGC = vt0, vtG'A' + vtG'B' + vtG'C' = vt0
=> vt0 = (vtG'G + vtGA + vtAA') + (vtG'G + vtGB + vtBB') + (vtG'G + vtGC + vtCC')
=3vtG'G + (vtGA + vtGB + vtGC) + (vtBA + vtCB + vtAC)
=3vtG'G + vt0 + (vtBA + vtAC + vtCB) = 3vtG'G + vt0
=> vtG'G = vt0
=> G' trùng với G
Cho hình lăng trụ tam giác ABC A'B'C'. Gọi K M N E lần lượt là trung điểm của các cạnh CC' AB AA' và BB' . G là trọng tâm tam giác ABC, I là điểm thuộc đoạn BC sao cho BI = 1/3 BC. CMR
a/ (MNC) // (A'BK)
b/ (MNK) // (A'BC')
c/ ( GKN) // (A'IC')
Giúp mình câu c với ạ
Trong mặt phẳng (α) cho tam giác ABC. Từ ba đỉnh của tam giác này ta kẻ các nửa đường thẳng song song cùng chiều Ax, By, Cz không nằm trong (α). Trên Ax lấy đoạn AA' = a, trên By lấy đoạn BB' = b, trên Cz lấy đoạn CC' = c.
a) Gọi I, J và K lần lượt là các giao điểm B'C', C'A' và A'B' với (α).
Chứng minh rằng I B I C . J C J A . K A K B = 1
b) Gọi G và G' lần lượt là trọng tâm của các tam giác ABC và A'B'C'.
Chứng minh: GG′ // AA′.
c) Tính GG' theo a, b, c
a) CC′ // BB′ ⇒ ΔICC′ ∼ ΔIBB′
CC′ // AA′ ⇒ ΔJCC′ ∼ ΔJAA′
AA′ // BB′ ⇒ ΔKAA′ ∼ ΔKBB′
b) Gọi H và H’ lần lượt là trung điểm của các cạnh BC và B’C’. Vì HH’ là đường trung bình của hình thang BB’CC’ nên HH′ // BB′.
Mà BB′ // AA′ suy ra HH′ // AA′
Ta có: G ∈ AH và G′ ∈ A′H′ và ta có:
c) AH′ ∩ GG′ = M ⇒ GG′ = G′M + MG
Ta có: G′M // AA′ ⇒ ΔH′G′M ∼ ΔH′A′A
MG // HH′ ⇒ ΔAMG ∼ ΔAH′H
Mặt khác HH’ là đường trung bình của hình thang BB’CC’ nên
Từ các đỉnh của tam giác ABC ta kẻ các đoạn thẳng AA',BB',CC' song song cùng chiều, bằng nhau và không nằm trong mặt phẳng của tam giác. Gọi I, G và K lần lượt là trọng tâm của các tam giác ABC, ACC' và A'B'C'
a) Chứng minh (IGK) // (BB'C'C)
b) Chứng minh rằng (A'GK) // (AIB')
Ta có:
\(\overrightarrow{AG}=\dfrac{2}{3}\overrightarrow{AM}\)
Mà \(\overrightarrow{AM}=\dfrac{1}{2}\overrightarrow{AB}+\dfrac{1}{2}\overrightarrow{AC}\)
\(\Rightarrow\overrightarrow{AG}=\dfrac{2}{3}\left(\dfrac{1}{2}\overrightarrow{AB}+\dfrac{1}{2}\overrightarrow{AC}\right)=\dfrac{1}{3}\overrightarrow{AB}+\dfrac{1}{3}\overrightarrow{AC}\)
\(\dfrac{1}{3}\left(\overrightarrow{AA'}+\overrightarrow{BB'}+\overrightarrow{CC'}\right)=\dfrac{1}{3}\left(\overrightarrow{AG}+\overrightarrow{GG'}+\overrightarrow{G'A'}+\overrightarrow{BG}+\overrightarrow{GG'}+\overrightarrow{G'B'}+\overrightarrow{CG}+\overrightarrow{GG'}+\overrightarrow{G'C'}\right)\)
\(=\dfrac{1}{3}.3.\overrightarrow{GG'}=\overrightarrow{GG'}\)