Cho tam giác ABC với trọng tâm G. Gọi A',B',C' lần lượt là trung điểm của các cạnh BC,AC,AB của tam giác ABC. Phép vị tự biến tam giác A'B'C' thành tam giác ABC là
A. Phép vị tự tâm G, tỉ số k=2
B. Phép vị tự tâm G, tỉ số k=-2
C. Phép vị tự tâm G, tỉ số k=-3
D. Phép vị tự tâm G, tỉ số k=3
Trong mặt phẳng (α) cho tam giác ABC. Từ ba đỉnh của tam giác này ta kẻ các nửa đường thẳng song song cùng chiều Ax, By, Cz không nằm trong (α). Trên Ax lấy đoạn AA' = a, trên By lấy đoạn BB' = b, trên Cz lấy đoạn CC' = c.
a) Gọi I, J và K lần lượt là các giao điểm B'C', C'A' và A'B' với (α).
Chứng minh rằng I B I C . J C J A . K A K B = 1
b) Gọi G và G' lần lượt là trọng tâm của các tam giác ABC và A'B'C'.
Chứng minh: GG′ // AA′.
c) Tính GG' theo a, b, c
Cho hình lăng trụ tam giác ABCA'B'C' có các cạnh bên là AA', BB', CC'. Gọi I và I'tương ứng là trung điểm của hai cạnh BC và B'C'.
a) Chứng minh rằng AI // A'I'.
b) Tìm giao điểm của IA' với mặt phẳng (AB'C').
c) Tìm giao tuyến của (AB'C') và (A'BC).
Cho lăng trụ ABC.A'B'C' có đáy là tam giác đều cạnh a. Hình chiếu của A' lên (ABC) là trọng tâm của ΔABC. AA' = \(\dfrac{a\sqrt{6}}{3}\). Gọi P,Q,N lần lượt là trung điểm của AB,CC' và A'G. Tính khoảng cách từ N đến (PQC)
Từ các đỉnh của tam giác ABC ta kẻ các đoạn thẳng AA', BB', CC' song song cùng chiều, bằng nhau và không nằm trong mặt phẳng của tam giác. Gọi I, G và K lần lượt là trọng tâm của các tam giác ABC, ACC', A'B'C'.
a) Chứng minh (IGK) // (BB′CC′).
b) Chứng minh rằng (A′GK) // (AIB′).
Cho hình lăng trụ tam giác ABC.A’B’C’. Gọi M, N, P lần lượt là trung điểm các cạnh bên AA’, BB’, CC’. Khẳng định nào sau đây là đúng
Cho tam giác ABC với trọng tâm G. Gọi A’, B’, C’ lần lượt là trung điểm các cạnh BC, AC, AB của tam giác ABC. Khi đó, phép vị tự nào biến tam giác A’B’C’ thành tam giác ABC?
A. Phép vị tự tâm G, tỉ số 2
B. Phép vị tự tâm G, tỉ số –2
C. Phép vị tự tâm G, tỉ số − 2 3
D. Phép vị tự tâm G, tỉ số − 1 2
Cho hình lăng trụ tam giác ABC.A’B’C’. Gọi M và M’ lần lượt là trung điểm của các cạnh BC và B’C’.
a) Chứng minh rằng AM song song với A’M’.
b) Tìm giao điểm của mặt phẳng (A’B’C’) với đường thẳng A’M.
c) Tìm giao tuyến d của hai mặt phẳng (AB’C’) và (BA’C’).
d) Tìm giao điểm G của đường thẳng d với mp(AMA’). Chứng minh G là trọng tâm của tam giác AB’C’.
Cho ∆ A B C có trọng tâm G. Gọi M, N, P lần lượt là trung điểm của các cạnh AB, BC, CA. Phép vị tự nào sau đây biến tam giác ABC thành tam giác NPM?
A. V A ; - 1 2
B. V G ; 1 2
C. V G ; - 2
D. V G ; - 1 2