CMR:
a) a^2(a+1)+2x(a+1) chia hết cho 6 với a thuộc Z
b)a(2^a-3)-2a(a+1) chia hết cho 5 với a thuộc Z
c)x^2+2x+2>0 với x thuộc Z
d)x^2-x+1>0 với x thuộc Z
e)-x^2+4x-5< 0 với x thuộc Z
chứng minh rằng
a2(a+1)+2a(a+1) chia hết cho 6, a thuộc Z
a(2a-3)-2a(a+1) chia hết cho 5 với a thuộc Z
x2 +2x+2>0 với x thuộc Z
-x^2 +4x-5<0 với x thuộc Z
a^2(a+1)+2a(a+1)
=(a+1)(a^2+2a)
=a(a+1)(a+2)
đây là tích 3 số nguyên liên tiếp, mà trong đó thì chắc chắn có 1 số chia hết cho3, 1 số chia hết cho 2 nên tích đó chia hết cho 6.
a(2a-3)-2a(a+1)
= 2a^2 - 3a - 2a^2 - 2a
= - 5a chia hết cho 5
x^2 + 2x + 2
=(x+1)^2 +1
(x+1)^2 là số dương; 1 là số dương nên "cái kết quả trên" lớn hơn 0
-x^2 + 4x - 5
= - (x^2 - 4x + 5)
= - (x - 2)^2 + 1
vậy kết quả trên bé hơn 0
bài này mà gọi là bài lớp 8 hả còn dễ hơn bài lớp 6 em là hs lớp 6
1,CMR:
a,a2(a+1)+2a(a+1) chia hết cho 6 với a thuộc Z
b,a(2a-3)-2a(a+1) chia hết cho 5 với a thuộc Z
c,x2+2x+2>0 với x thuộc Z
d,x2-x+1>0 với x thuộc Z
e,-x2+4x-5<0 với x thuộc Z
2,Tìm GTNN,GTLN của biểu thức sau:
a,x2-6x+11
b,-x2+6x-11
1/
a/ \(a^2\left(a+1\right)+2a\left(a+1\right)=a\left(a+1\right)\left(a+2\right)\)
Vì a(a+1)(a+2) là tích của 3 số nguyên liên tiếp nên chia hết cho 2 và 3
Mà (2,3) = 1 nên a(a+1)(a+2) chia hết cho 6. Ta có đpcm
b/ Đề sai , giả sử với a = 3
c/ \(x^2+2x+2=\left(x^2+2x+1\right)+1=\left(x+1\right)^2+1>0\)
d/ \(x^2-x+1=\left(x^2-x+\frac{1}{4}\right)+\frac{3}{4}=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}>0\)
e/ \(-x^2+4x-5=-\left(x^2-4x+4\right)-1=-\left(x-2\right)^2-1< 0\)
2/ a/ \(x^2-6x+11=\left(x^2-6x+9\right)+2=\left(x-3\right)^2+2\ge2\)
BT đạt giá trị nhỏ nhất bằng 2 tại x = 3
b/ \(-x^2+6x-11=-\left(x^2-6x+9\right)-2=-\left(x-3\right)^2-2\le-2\)
BT đạt giá trị lớn nhất bằng -2 tại x = 3
2
a,M= x2-6x+11 = x2-6x+9+2
=(x-3)2+2 =>M lớn hơn hoặc bằng 2
=> minM=2 <=> x=3
CMR
a, a(2a - 3) -2a(a + 1) chia hết cho 5 với a thuộc Z
b, x^2 +2x +2 >0 với x thuộc Z
a)
ta có:
a(2a - 3) - 2a(a + 1)
= 2a2 - 3a - 2a2 - 2a
= -5a \(⋮\) 5
b)
ta có:
x2 + 2x + 2
= x2 + 2x + 1 + 1
= (x + 1)2 + 1
vì (x + 1)2 \(\ge0\forall x\in R\)
\(\Rightarrow\) (x + 1)2 +1 \(\ge1\) > 0 \(\forall x\in R\)
Vậy (x + 1)2 +1 > 0 \(\forall x\in R\)
Hay x2 + 2x + 2 > 0 \(\forall x\in R\)
. Bài 1:Tìm x
a; x.(x-4)+x-4=0
b; x.(x-4)=2x-8
c; (2x+3).(x-1)+(2x-3).(1-x)=0
d; (x+1).(6x^2+2x)+(x-1).(6x^2+2x)=0
. Bài 2:Tính giá trị biểu thức
a; A=x.(2y-z)-2y.(z-2y) với x=2,y=1/2,z= -1
b; B=x.(y-x)+y.(x-y) với x=13,y=3
c; C=x.(x+y)-5x-5y với x=33/5,y=12/5
. Bài 3
a; CMR: n^2.(n+1)+2n.(n+1) chia hết cho 6 với mọi n thuộc Z
b; CMR: 24^n+1 - 24^n chia hết cho 23 với mọi n thuộc N
c; CMR: (2^n-1)^2 - 2^n+1 chia hết cho 8 với mọi n thuộc Z
. Bài 4: CMR: m^3 - m chia hết cho 6 với mọi m thuộc Z
bn ... ơi...mik ...bỏ...cuộc ...hu...hu
. Huhu T^T mong sẽ có ai đó giúp mình "((
Chứng minh rằng
a) a( 2^a - 3) - 2a( a + 1 ) chia hết cho 6 với a thuộc Z
b) -x^2+4x-5 < 0 với x thuộc Z
câu a là a(2a-3) chia hết cho 5 nha
A . a(2a - 3 ) - 2a ( a+1)
=2a^2 - 3a - 2a^2 - 2a
=-5a
vi 5 chia het cho 5 => -5a chia het cho 5
=> a(2a-3)-2a(a+1) chia het cho 5
B . -x^2 + 4x - 5
=-(x^2 - 4x +5)
=-(x^2 - 4x + 4 + 1)
=-[ (x^2 - 4x + 4 ) +1 ]
=-[(x-2)^2 +1]
=-(x-2)^2 - 1
vi -(x-2)^2 < 0
=> -(x-2)^2 -1 < -1
=> -(x-2 )^2 - 1<0
=> -x^2 +4x - 5 < 0
BÀI 1.
CHỨNG MINH:
a) a^2(a+1)+2a(a+1) chia hết cho 6 vs a thuộc Z
b) a(2a-3)-2a(a+1) chia hết cho 5 vs a thuộc Z
BÀI 2.
a) 36x^2-49=0
b(x-1)(x+1)=x+2
c) x^2(x+1)+2x(x+1)=0
d) x(2x-3)-2(3-2x)=0
e) 2x^3(2x-3)-x^2(4x^2-6x+z)=0
f)(x-2)^2-(x+3)^2=5+4(x+1)
a) \(36x^2-49=0\)
\(\Leftrightarrow\left(6x\right)^2-7^2=0\)
\(\Leftrightarrow\left(6x-7\right)\left(6x+7\right)=0\)
\(TH_1:6x-7=0\) \(TH_2:6x+7=0\)
\(\Leftrightarrow6x=7\) \(\Leftrightarrow6x=-7\)
\(\Leftrightarrow x=\dfrac{7}{6}\) \(\Leftrightarrow x=-\dfrac{7}{6}\)
Vậy pt có tập nghiệm \(S=\left\{\dfrac{7}{6};-\dfrac{7}{6}\right\}\)
Bài 2
a) 36x2-49=0
⇔ (6x)2-49=0
⇔(6x-7).(6x+7)=0
TH1: 6x-7=0 TH2: 6x+7=0
⇔6x=7 ⇔6x=-7
⇔x=7/6 ⇔x=-7/6
B1: tìm x;
a, (x-3)^2+(4+x)(4-x)=10
b,(x+4)^2+(1+x)(1-x)=7
c,(x-4)^2-(x+2)(x-2)=6
d,4(x-3)^2-(2x+1)(2x-1)=10
e,25(x+3)^2+(1+5x)(1-5x)=8
g,-4(x-1)^2+(2x+1)(2x-1)=-3
B2:chứng minh rằng:
1, a^2(a+1)+2a(a+1) chia hết cho 6 với mọi a thuộc Z
2, x^2+2x +2 >0 với mọi x thuộc Z
3,x^2-x +1>0 với mọi x thuộc Z
4,-x^2+4x -5<0 với mọi x thuộc Z
mk cần gấp vì chiều 2h 30 mk phải đi học
1/
a, (x-3)2+(4+x)(4-x)=10
<=>x2-6x+9+(16-x2)=10
<=>-6x+25=10
<=>-6x=-15
<=>x=5/2
còn lại tương tự a
2/
a, \(a^2\left(a+1\right)+2a\left(a+1\right)=\left(a^2+2a\right)\left(a+1\right)=a\left(a+1\right)\left(a+2\right)\)
Vì a(a+1)(a+2) là tích 3 nguyên liên tiếp nên a(a+1)(a+2) chia hết cho 2,3
Mà (2,3)=1
=>a(a+1)(a+2) chia hết cho 6 (đpcm)
b, \(x^2+2x+2=\left(x^2+2x+1\right)+1=\left(x+1\right)^2+1\)
Vì \(\left(x+1\right)^2\ge0\Rightarrow\left(x+1\right)^2+1\ge1>0\left(đpcm\right)\)
c, \(x^2-x+1=\left(x^2-x+\frac{1}{4}\right)+\frac{3}{4}=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\)
Vì \(\left(x-\frac{1}{2}\right)^2\ge0\Rightarrow\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}>0\)(đpcm)
d, \(-x^2+4x-5=-\left(x^2-4x+4\right)-1=-\left(x-2\right)^2-1\)
Vì \(-\left(x-2\right)^2\le0\Rightarrow-\left(x-2\right)^2-1\le-1< 0\) (đpcm)
g,\(-4\left(x-1\right)^2+\left(2x+1\right)\left(2x-1\right)=-3\)
\(\Leftrightarrow-4\left(x^2-2x+1\right)+4x^2-1=-3\)
\(\Leftrightarrow-4x^2+8x-4+4x^2-1=-3\)
\(\Leftrightarrow8x=2\)
\(\Leftrightarrow x=\frac{1}{4}\)
bn xem lại đi nha
. Bài 1:Tìm x,biết
a; x^3-16x=0
b: 9x^2-4.(3x-2)^2=0
c: (x+2)(x^2-2x+4)+(x+2)^2
. Bài 2: CMR
a; n^3+11n chia hết cho 6 với mọi n thuộc Z
b; n^6-n^2 chia hết cho 60 với mọi n thuộc Z
\(a.\left(x^3-16x\right)=0\)
\(\Leftrightarrow x\left(x^2-16\right)=0\)
\(\Leftrightarrow x\left(x-4\right)\left(x+4\right)=0\)
\(\Leftrightarrow\hept{\begin{cases}x=0\\x-4=0\\x+4=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=0\\x=4\\x=-4\end{cases}}}\)
Uầy lười lm waa
. Hãy nhiệt tình lên :>> Chúng ta là công dân cùng một nước,phải giúp đỡ nhau a~~~
a) a2 ( a + 1 ) + 2a ( a + 1) chia hết cho 6 với a ∈ Z.
b) a ( 2a - 3 ) - 2a ( a + 1 ) chia hết cho 5 với a ∈Z.
c) x2 + 2x + 2 > 0 với mọi x
d) x2-x+1>0với mọi x
e) -x2 + 4x-5<0 với mọi x