16(2-3x)+x^2(3x-2)=0
Tìm x
Bài 1: tìm x
a, (3x-5)2 - (x-1)2 = 0
b, 16(2-3x) + x2(3x-2) =0
Bài 2:
a: \(x^2-4x+3=0\)
\(\Leftrightarrow\left(x-1\right)\left(x-3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=3\end{matrix}\right.\)
a, (3x-5)^2 - (x-1)^2 = 0
(3x-5-x+1)(3x-5+x-1) =0
(2x-4)(4x-6)=0
Do đó: 2x-4=0 hoặc 4x-6=0
Th1: 2x-4=0 => 2x=4
=> x=2
Th2: 4x-6=0 => 4x=6
=> x = 4/6 =2/3
Vậy x = 2 ; 2/3
BT2: Tìm x 2, 3x(x-4)+2x-8=0 3, 4x(x-3)+x^2-9=0 4, x(x-1)-x^2+3x=0 5, x(2x-1)-2x^2+5x=16
2: \(3x\left(x-4\right)+2x-8=0\)
=>\(3x\left(x-4\right)+2\left(x-4\right)=0\)
=>\(\left(x-4\right)\left(3x+2\right)=0\)
=>\(\left[{}\begin{matrix}x-4=0\\3x+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=4\\x=-\dfrac{2}{3}\end{matrix}\right.\)
3: 4x(x-3)+x2-9=0
=>\(4x\left(x-3\right)+\left(x+3\right)\left(x-3\right)=0\)
=>\(\left(x-3\right)\left(4x+x+3\right)=0\)
=>\(\left(x-3\right)\left(5x+3\right)=0\)
=>\(\left[{}\begin{matrix}x-3=0\\5x+3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-\dfrac{3}{5}\end{matrix}\right.\)
4: \(x\left(x-1\right)-x^2+3x=0\)
=>\(x^2-x-x^2+3x=0\)
=>2x=0
=>x=0
5: \(x\left(2x-1\right)-2x^2+5x=16\)
=>\(2x^2-x-2x^2+5x=16\)
=>4x=16
=>x=4
Tìm x biết
( x + 1/2 )^2 -1/16 =0
( 3x + 1/2 )^2 + 25/16 = 0
Ta có: \(\left(x+\frac{1}{2}\right)^2-\frac{1}{16}=0\)
\(\Rightarrow\left(x+\frac{1}{2}\right)^2=\frac{1}{16}\)
Mà \(\frac{1}{16}=\left(\frac{1}{4}\right)^2\)
\(\Rightarrow x+\frac{1}{2}=\frac{1}{4}\Rightarrow x=\frac{-1}{4}\)
Vậy ....
\(\left(3x+\frac{1}{2}\right)^2+\frac{25}{16}=0\)
\(\Rightarrow\left(3x+\frac{1}{2}\right)^2=\frac{-25}{16}\)
Vì \(\left(3x+\frac{1}{2}\right)^2\ge0\left(\forall x\in Z\right)\)
Nên x thuộc rỗng (không có giá trị của x)
a) (x + 1/2)^2 - 1/16 = 0
(x+1/2)^2 = 1/16 = (1/4)^2 = (-1/4)^2
TH1: x + 1/2 = 1/4
x = -1/4
TH2: x + 1/2 = -1/4
x = -3/4
KL:...
b) (3x+1/2)^2 + 25/16 = 0
(3x + 1/2)^2 = -25/16
=> không tìm được x
1Rút gọn biểu thức a) (3x+1)^2+(3x-1)^2-2(3x+1)(3x-1) b) 8(3^2+1)(3^4+1)...(2^16+1) c ) (2^2+1)(2^4+1)...(2^32+1) 2 Tìm x biết a) x(2x-1)-2x+1=0 b) 3x(x-1)=x-1 c) 3(x+2)-x^2-2x=0 d) x^3+x=0 3 Phân tích thành nhân tử a) 4x^3-x b) 6x^2-12xy+6y^2-24z^2
Bài 2:
a: Ta có: \(x\left(2x-1\right)-2x+1=0\)
\(\Leftrightarrow\left(2x-1\right)\left(x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{2}\\x=1\end{matrix}\right.\)
tìm x biết
a, (x^2-4x+16)(x+4)-x(x+1)(x+2)+3x^2=0
b, (8x+2)(1-3x)+(6x-1)(4x-10)=-50
Trả lời:
a, ( x2 - 4x + 16 )( x + 4 ) - x ( x + 1 )( x + 2 ) + 3x2 = 0
<=> x3 + 4x2 - 4x2 - 16x + 16x + 64 - x ( x2 + 3x + 2 ) + 3x2 = 0
<=> x3 + 64 - x3 - 3x2 - 2x + 3x2 = 0
<=> 64 - 2x = 0
<=> 2x = 64
<=> x = 32
Vậy x = 32 là nghiệm của pt.
b, ( 8x + 2 )( 1 - 3x ) + ( 6x - 1 )( 4x - 10 ) = - 50
<=> 8x - 24x2 + 2 - 6x + 24x2 - 60x - 4x + 10 = - 50
<=> - 62x + 12 = - 50
<=> - 62x = - 62
<=> x = 1
Vậy x = 1 là nghiệm của pt.
Tìm x biết:
1,
a,3x(x+1) - 2x(x+2) = -x-1
b,2x(x-2020) - x+2020 = 0
c,(x-4)2 - 36 = 0
d,x2 + 8x - 16 = 0
e,x(x+6) - 7x - 42 = 0
f,25x2 - 16 = 0
2,
a,3x3 - 12x = 0
b,x2 + 3x - 10 = 0
Bài 1:
a) \(\Rightarrow3x^2+3x-2x^2-4x+x+1=0\)
\(\Rightarrow x^2=-1\left(VLý\right)\Rightarrow S=\varnothing\)
b) \(\Rightarrow\left(x-2020\right)\left(2x-1\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=2020\\x=\dfrac{1}{2}\end{matrix}\right.\)
c) \(\Rightarrow\left(x-10\right)\left(x+2\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=10\\x=-2\end{matrix}\right.\)
d) \(\Rightarrow\left(x+4\right)^2=0\Rightarrow x=-4\)
e) \(\Rightarrow\left(x+6\right)\left(x-7\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=-6\\x=7\end{matrix}\right.\)
f) \(\Rightarrow\left(5x-4\right)\left(5x+4\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{4}{5}\\x=-\dfrac{4}{5}\end{matrix}\right.\)
Bài 2:
a) \(\Rightarrow3x\left(x^2-4\right)=0\Rightarrow3x\left(x-2\right)\left(x+2\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x=2\\x=-2\end{matrix}\right.\)
b) \(\Rightarrow x\left(x-2\right)+5\left(x-2\right)=0\Rightarrow\left(x-2\right)\left(x+5\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=2\\x=-5\end{matrix}\right.\)
Tìm x biết
a, ( 3x - 1 )^2 - 3x( 3x + 2 ) = 0
b, ( 2x + 3)^2 = 4x(x + 1 )
c, ( 1 / 2 - 4)^2 + 3 / 2x ( x - 1 ) = ( x + 1 / 2)^2
d, x^2 - 4x + 4 = 16
a, ( 3x - 1 )^2 - 3x( 3x + 2 ) = 0
<=>9x2-6x+1-9x2-6x=0
<=>-12x+1=0
<=>-12x=-1
<=>x=1/12
b, ( 2x + 3)^2 = 4x(x + 1 )
<=>(2x+3)2-4x(x+1)=0
<=>4x2+12x+9-4x2-4x=0
<=>8x+9=0
<=>8x=-9
<=>x=-9/8
c) vô fx gõ lại
d)x2-4x+4=16
<=>(x-2)2-16=0
<=>(x-2)2-42=0
<=>(x-2+4)(x-2-4)=0
<=>(x+2)(x-6)=0
<=>x+2=0 hoặc x-6=0
<=>x=-2 hoặc x=6
Tìm x:
1) ( 4x3 + 3x3) : x3+ ( 15x2 + 6x) : ( -3x) = 0
2) ( 25x2 - 10x) : 5x + 3 ( x - 2 ) = 4
3) ( 3x + 1 )2 - ( 2x + 1/2 ) 2 = 00
4) x2 + 8x + 16 = 0
5) 25 - 10x + x2 = 0
`1,(4x^3+3x^3):x^3+(15x^2+6x):(-3x)=0`
`<=> 4 + 3 + (-5x) + (-2)=0`
`<=> -5x+5=0`
`<=>-5x=-5`
`<=>x=1`
`2,(25x^2-10x):5x +3(x-2)=4`
`<=> 5x - 2 + 3x-6=4`
`<=> 8x -8=4`
`<=> 8x=12`
`<=>x=12/8`
`<=>x=3/2`
`3,(3x+1)^2-(2x+1/2)^2=0`
`<=> [(3x+1)-(2x+1/2)][(3x+1)+(2x+1/2)]=0`
`<=>( 3x+1-2x-1/2)(3x+1+2x+1/2)=0`
`<=>( x+1/2) (5x+3/2)=0`
`@ TH1`
`x+1/2=0`
`<=>x=0-1/2`
`<=>x=-1/2`
` @TH2`
`5x+3/2=0`
`<=> 5x=-3/2`
`<=>x=-3/2 : 5`
`<=>x=-15/2`
`4, x^2+8x+16=0`
`<=>(x+4)^2=0`
`<=>x+4=0`
`<=>x=-4`
`5, 25-10x+x^2=0`
`<=> (5-x)^2=0`
`<=>5-x=0`
`<=>x=5`
Tìm x, biết:
a) (2x+2)(x-1)-(x+2)(2x+1)=0;
b)(3x+1)(2x-3)-6x(x+2)=16;
c)(12x-5)(4x-1)+(3x-7)(1-16x)=81
mn ơi giúp mik vs ạ :<
a: =>2x^2-2x+2x-2-2x^2-x-4x-2=0
=>-5x-4=0
=>x=-4/5
b: =>6x^2-9x+2x-3-6x^2-12x=16
=>-19x=19
=>x=-1
c: =>48x^2-12x-20x+5+3x-48x^2-7+112x=81
=>83x=83
=>x=1
Biết 2/3x(x^2-16)=0 . Các số x tìm được là A.-1 B.0;16;-16 C.0;4 D.4;-4
Lời giải:
$\frac{2}{3}x(x^2-16)=0$
$\Leftrightarrow x=0$ hoặc $x^2-16=0$
$\Leftrightarrow x=0$ hoặc $(x-4)(x+4)=0$
$\Leftrightarrow x=0$ hoặc $x-4=0$ hoặc $x+4=0$
$\Leftrightarrow x=0$ hoặc $x=\pm 4$
Không có đáp án nào đúng.