tìm GTLN và GTNN của
\(P=\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\)
help me
#mã mã#
Tìm GTLN và GTNN (nếu có) của M = \(\frac{4x+1}{x^2+3}\)
Cho a,b,c ? 0 và a + b + c = 3. Tìm GTNN của A = \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)
Áp dụng bdtd quen thuộc :
\(\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge9\)
Ta có :
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{9}{a+b+c}=\frac{9}{3}=3\)
Dấu "=" xảy ra \(\Leftrightarrow a=b=c=1\)
Chứng minh bđt nha ( quên mất )
Áp dụng bđt Cauchy :
\(\hept{\begin{cases}a+b+c\ge3\sqrt[3]{abc}\\\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge3\sqrt[3]{\frac{1}{abc}}\end{cases}}\)
Nhân từng vế của 2 bđt ta được đpcm
Dấu "=" khi \(a=b=c\)
\(M=\frac{4x+1}{x^2+3}\)
\(\Leftrightarrow Mx^2+3M=4x+1\)
\(\Leftrightarrow Mx^2-4x+3M-1=0\)(1)
*Nếu M = 0 thì x = -1/4
*Nếu M khác 0 thì (1) có nghiệm \(\Leftrightarrow\Delta'\ge0\)
\(\Leftrightarrow4-M\left(3M-1\right)\ge0\)
\(\Leftrightarrow4-3M^2+M\ge0\)
\(\Leftrightarrow-1\le M\le\frac{4}{3}\)
Tìm GTNN và GTLN biết a ; b và c dương :\(\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)
để tìm gtnn áp dụng bđt côsi
để tìm gtln
Lại có: \(\frac{a}{b}+\frac{b}{a}=\frac{a^2+b^2}{ab}\ge2\)Tương tự \(\frac{b}{c}+\frac{c}{b}\ge2;\frac{c}{a}+\frac{a}{c}\ge2\)
Ta có: \(\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)
\(=1+\frac{b}{a}+\frac{b}{a}+\frac{a}{b}+1+\frac{c}{b}+\frac{a}{c}+\frac{b}{c}+1\)
\(=3+\left(\frac{a}{b}+\frac{b}{a}\right)+\left(\frac{b}{c}+\frac{c}{b}\right)+\left(\frac{c}{a}+\frac{a}{c}\right)\ge9\)
Dấu "=" xảy ra khi \(a=b=c\)
Cho a,b,c không âm thỏa a+b+c=3
Tìm gtnn và gtln của biểu thức:
\(M=\frac{a}{b^2+1}+\frac{b}{c^2+1}+\frac{c}{a^2+1}\)
Ta có:
\(\frac{a}{b^2+1}=\frac{a\left(b^2+1\right)-ab^2}{b^2+1}=a-\frac{ab^2}{b^2+1}\)
Nhận xét: a,b,c không âm nên theo BĐT Cô - si, ta có:
\(b^2+1\ge2\sqrt{b^2.1}=2b\)
=> \(\frac{ab^2}{b^2+1}\le\frac{ab^2}{2b}=\frac{ab}{2}\)
=> \(a-\frac{ab^2}{b^2+1}\ge a-\frac{ab}{2}\)
=> \(\frac{a}{b^2+1}\ge a-\frac{ab}{2}\)
Tương tự, ta cũng có:
\(\frac{b}{c^2+1}\ge b-\frac{bc}{2}\)
\(\frac{c}{a^2+1}\ge c-\frac{ac}{2}\)
Vậy ta suy ra
\(M=\frac{a}{b^2+1}+\frac{b}{c^2+1}+\frac{c}{a^2+1}\ge a+b+c-\frac{ab}{2}-\frac{bc}{2}-\frac{ac}{2}\)
Mà a+b+c = 3 nên suy ra:
\(M\ge3-\left(\frac{ab}{2}+\frac{bc}{2}+\frac{ac}{2}\right)\)(1)
Ta có:
\(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\)
<=> \(a^2-2ab+b^2+b^2-2bc+c^2+c^2-2ac+a^2\ge0\)
<=> \(2\left(a^2+b^2+c^2\right)\ge2\left(ab+bc+ac\right)\)
<=> \(a^2+b^2+c^2\ge ab+ac+bc\)
<=> \(a^2+b^2+c^2+2\left(ab+bc+ac\right)\ge3ab+3ac+3bc\)
<=> \(\left(a+b+c\right)^2\ge3\left(ab+ac+bc\right)\)
<=> \(3^2\ge3\left(ab+ac+bc\right)\)
<=> \(ab+ac+bc\le3\)
<=> \(\frac{ab+ac+bc}{2}\le\frac{3}{2}\)
<=> \(3-\frac{ab+ac+bc}{2}=3-\frac{3}{2}=\frac{3}{2}\) (2)
Từ 1 và 2 => \(M\ge\frac{3}{2}\)
Dấu bằng xảy ra <=> a=b=c=1
1/Cho a,b,c≥0 và \(a^2+b^2+c^2\le abc\). Tìm GTLN của
M=\(\frac{a}{a^2+bc}+\frac{b}{b^2+ca}+\frac{c}{c^2+ba}\)
2/Cho a,b,c>0 thỏa mãn 13a+5b+12c=9. Tìm GTLN của
N=\(\frac{ab}{2a+b}+\frac{3bc}{2b+c}+\frac{6ca}{2c+a}\)
3/Cho a,b,c>0 thỏa mãn a+b+c=3. Tìm GTNN của
P=\(\frac{1}{2+a^2b}+\frac{1}{2+b^2c}+\frac{1}{2+c^2a}\)
4/Cho các số thực a,b,c thỏa mãn ab+7bc+ca=188.
Tìm GTNN của P=\(5a^2+11b^2+5c^2\)
Ai giải được câu nào giải hộ mình vs ạ!!!
4/ Xét hiệu: \(P-2\left(ab+7bc+ca\right)\)
\(=5a^2+11b^2+5c^2-2\left(ab+7bc+ca\right)\)
\(=\frac{\left(5a-b-c\right)^2+6\left(3b-2c\right)^2}{5}\ge0\)
Vì vậy: \(P\ge2\left(ab+7bc+ca\right)=2.188=376\)
Đẳng thức xảy ra khi ...(anh giải nốt ạ)
@Cool Kid:
Bài 5: Bản chất của bài này là tìm k (nhỏ nhất hay lớn nhất gì đó, mình nhớ không rõ nhưng đại khái là chọn k) sao cho: \(5a^2+11b^2+5c^2\ge k\left(ab+7bc+ca\right)\)
Rồi đó, chuyển vế, viết lại dưới dạng tam thức bậc 2 biến a, b, c gì cũng được rồi tự làm đi:)
í lộn, bài 4:v Bài 3 thấy quen quen, đợi chút em lục lại@Hoàng Quốc Tuấn
Bài 1: Cho a,b,c >0 và ab+bc+ca=3abc.
Chứng minh: \(\frac{a}{a^2+bc}+\frac{b}{b^2+ac}+\frac{c}{c^2+ab}\le\frac{3}{2}\)
Bài 2: Cho a,b > 0; \(2a+b\ge7.\)
Tìm GTNN của: S=\(a^2-a+3b+\frac{9}{a}+\frac{1}{b}+9\)
Help me!!!
1,Cho A=x/y+1 +y/x+1 bới x>0;y>0 và x+y=1
tìm GTNN,GTLN của A
2,Cho a+b+c=3 và a,b,c >0
Chứng minh \(\frac{a^2}{1+b}+\frac{b^2}{1+c}+\frac{c^2}{1+a}\ge\frac{3}{2}\)
1) Tìm GTNN :
Ta có : \(\frac{x}{y+1}+\frac{y}{x+1}=\frac{x^2}{xy+x}+\frac{y^2}{xy+y}\ge\frac{\left(x+y\right)^2}{2xy+\left(x+y\right)}\ge\frac{1}{\frac{\left(x+y\right)^2}{2}+1}=\frac{1}{\frac{1}{2}+1}=\frac{2}{3}\)
Dấu "=" xảy ra \(\Leftrightarrow x=y=\frac{1}{2}\)
2) Áp dụng BĐT Svacxo ta có :
\(\frac{a^2}{1+b}+\frac{b^2}{1+c}+\frac{c^2}{1+a}\ge\frac{\left(a+b+c\right)^2}{3+a+b+c}=\frac{9}{6}=\frac{3}{2}\)
Dấu "=" xảy ra \(\Leftrightarrow a=b=c=1\)
2/ Áp dụng bđt Cô- si cho 2 số dương ta có :
\(\frac{a^2}{1+b}+\frac{1+b}{4}\ge2\sqrt{\frac{a^2}{1+b}\frac{1+b}{4}}=a\)
Tương tự ta có \(\frac{b^2}{1+c}+\frac{1+c}{4}\ge b;\frac{c^2}{1+a}+\frac{1+a}{4}\ge c\)
\(\Rightarrow\frac{a^2}{1+b}+\frac{b^2}{1+c}+\frac{c^2}{1+a}\ge a+b+c-\left(\frac{1+b}{4}+\frac{1+c}{4}+\frac{1+a}{4}\right)\)
\(\Rightarrow\frac{a^2}{1+b}+\frac{b^2}{1+c}+\frac{c^2}{1+a}\ge3-\frac{1}{4}\left(a+b+c\right)-\frac{3}{4}=3-\frac{1}{4}.3-\frac{3}{4}=\frac{3}{2}\)
Dấu "=" xảy ra <=> a=b=c=1
\(A=\frac{x}{y+1}+\frac{y}{x+1}=\frac{x\left(x+1\right)+\left(y+1\right)}{\left(x+1\right)\left(y+1\right)}\)
\(=\frac{x^2+x+y^2+y}{\left(x+1\right)\left(y+1\right)}=\frac{\left(x+y\right)^2-2xy+1}{xy+x+y+1}=\frac{-2xy+2}{xy+2}\)
\(=\frac{-2\left(xy+2\right)+6}{xy+2}=-2+\frac{6}{xy+2}\)
vì x,y>0 \(\Rightarrow xy\ge0\Rightarrow xy+2\ge2\Rightarrow\frac{6}{xy+2}\le\frac{6}{2}\)
\(\Rightarrow A\le-2+\frac{6}{2}=1\)
\(\Rightarrow maxA=1\Leftrightarrow\orbr{\begin{cases}\hept{\begin{cases}x=1\\y=0\end{cases}}\\\hept{\begin{cases}x=0\\y=1\end{cases}}\end{cases}}\)\(\Rightarrow maxA=1\)<=> x=0 và y=1 hoặc x=1 và y=0
Áp dụng bđt (a+b)2>=4ab ta có:
\(1^2=\left(x+y\right)^2\ge4xy\)
\(\Rightarrow xy\le\frac{1}{4}\Rightarrow xy+2\le\frac{1}{4}+2=\frac{9}{4}\)
\(\Rightarrow A\ge-2+6:\frac{9}{4}=\frac{2}{3}\)
\(\Rightarrow minA=\frac{2}{3}\Leftrightarrow\hept{\begin{cases}x=y\\x+y=1\end{cases}\Leftrightarrow x=y=\frac{1}{2}}\)
Cho các só thực a,b,c thỏa mãn \(\left(a+c\right)\left(b+c\right)=4c^2\).Tìm GTLN , GTNN của P=\(\frac{a}{b+3c}+\frac{b}{a+3c}+\frac{ab}{bc+ca}\)
1) Cho a,b,c dương thỏa: a+b+c+6abc. Tìm GTNN của:
\(Q=\frac{bc}{a^3\left(c+2b\right)}+\frac{ca}{b^3\left(a+2c\right)}+\frac{ab}{c^3\left(b+2a\right)}\)
2> Tìm GTLN, GTNN của:
P=x-y+2018, biết \(\frac{x^2}{9}+\frac{y^2}{16}=36\)
Sửa đề: Cho a , b ,c dương thỏa mãn: a + b + c = 6abc . Phần dưới vẫn như vậy.
Ta có thể viết:
\(Q=\frac{bc}{a^3\left(c+2b\right)}+\frac{ca}{b^3\left(a+2c\right)}+\frac{ab}{c^3\left(b+2a\right)}\Leftrightarrow Q=\frac{1}{a^3}+\frac{bc}{c+2b}+\frac{1}{b^3}+\frac{ca}{a+2c}+\frac{1}{c^3}+\frac{ab}{b+2a}\)
\(\Rightarrow a=b=c\)
\(\Leftrightarrow Q=\frac{1}{a^3b^3c^3}+\frac{bc}{c+2b}+\frac{ca}{a+2c}+\frac{ab}{b+2a}\Leftrightarrow\frac{1}{\left[\left(a\right)\left(b\right)\left(c\right)\right]^9}+\frac{bc}{c+2b}+\frac{ca}{a+2c}+\frac{ab}{b+2a}\)
Do đó:
\(Q^9=\frac{1}{\left[\left(a\right)\left(b\right)\left(c\right)\right]}\Rightarrow Q^9\ge0\) , mà a , b ,c thỏa mãn a + b + c = 6abc
Vậy GTNN của Q là: 6000 : 9 = 666,6
Vậy dấu "=" xảy ra khi và chỉ khi \(\frac{1}{\left[\left(a\right)\left(b\right)\left(c\right)\right]}=666,6\)
\(\Rightarrow Q\) đạt GTNN bằng 666,6 và khi a =b =c = 666,6
Ps: Giải chơi nhé! Đừng làm theo! Mình không chịu trách nhiệm hay bất cứ hình phạt nào như: Trừ điểm hỏi đáp, hack nic mình đâu nhé!
Với a,b,c là các số thực không âm thỏa mãn \(a+b+c=1\)
tìm GTNN và GTLN của \(P=\left(a+2b+3c\right)\left(a+\frac{b}{2}+\frac{c}{3}\right)\)