Tìm m để pt sau có nghiệm thực phân biệt
\(\sqrt{x^2+mx+2}=2x+1\)
1,Tìm m để pt có \(\sqrt{2x^2+mx}=3-x\)
a, 1 nghiệm
b, 2 nghiệm phân biệt
2,Tìm m để pt có 2 nghiệm phân biệt \(\sqrt{x+2}+\sqrt{6-x}-\sqrt{\left(x+2\right)\left(6-x\right)}=m\)
a) Tìm m để pt \(\sqrt{2x^2-2x+m}=x+1\) có nghiệm
b) Tìm m để pt \(\sqrt{2x^3+mx^2+2x-m}=x+1\) có 3 nghiệm phân biệt
a, \(\sqrt{2x^2-2x+m}=x+1\)
\(\Leftrightarrow\left\{{}\begin{matrix}2x^2-2x+m=x^2+2x+1\\x+1\ge0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x^2-4x+m-1=0\left(1\right)\\x\ge-1\end{matrix}\right.\)
Yêu cầu bài toán thỏa mãn khi phương trình \(\left(1\right)\) có nghiệm \(x\ge-1\) chỉ có thể xảy ra các trường hợp sau
TH1: \(x_1\ge x_2\ge-1\)
\(\Leftrightarrow\left\{{}\begin{matrix}\Delta'\ge0\\\dfrac{x_1+x_2}{2}\ge-1\\1.f\left(-1\right)\ge0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}5-m\ge0\\2\ge-1\\m+4\ge0\end{matrix}\right.\)
\(\Leftrightarrow-4\le m\le5\)
TH2: \(x_1\ge-1>x_2\)
\(\Leftrightarrow\left\{{}\begin{matrix}5-m\ge0\\m+4< 0\end{matrix}\right.\)
\(\Rightarrow\) vô nghiệm
Vậy \(-4\le m\le5\)
Tìm m để pt : (x2- x - m)\(\sqrt{x}\) = 0 có 1 nghiệm phân biệt
Tìm m để pt : (x2- x - m)\(\sqrt{x}\) = 0 có 2 nghiệm phân biệt
Tìm m để pt : (x2- x - m)\(\sqrt{x}\) = 0 có 3 nghiệm phân biệt
ĐKXĐ: \(x\ge0\)
\(\left(x^2-x-m\right)\sqrt{x}=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x^2-x-m=0\left(1\right)\end{matrix}\right.\)
Giả sử (1) có nghiệm thì theo Viet ta có \(x_1+x_2=1>0\Rightarrow\left(1\right)\) luôn có ít nhất 1 nghiệm dương nếu có nghiệm
Do đó:
a. Để pt có 1 nghiệm \(\Leftrightarrow\left(1\right)\) vô nghiệm
\(\Leftrightarrow\Delta=1+4m< 0\Leftrightarrow m< -\dfrac{1}{4}\)
b. Để pt có 2 nghiệm pb
TH1: (1) có 1 nghiệm dương và 1 nghiệm bằng 0
\(\Leftrightarrow m=0\)
TH2: (1) có 2 nghiệm trái dấu
\(\Leftrightarrow x_1x_2=-m< 0\Leftrightarrow m>0\)
\(\Rightarrow m\ge0\)
c. Để pt có 3 nghiệm pb \(\Leftrightarrow\) (1) có 2 nghiệm dương pb
\(\Leftrightarrow\left\{{}\begin{matrix}\Delta=1+4m>0\\x_1x_2=-m>0\\\end{matrix}\right.\) \(\Leftrightarrow-\dfrac{1}{4}< m< 0\)
Bài 6: Cho PT x² + mx + m+3=0.
c) Giải PT khi m -2.
d) Tìm m để PT có hai nghiệm phân biệt x, ,x, thỏa mãn x +x =9.
e) Tim m để PT có hai nghiệm phân biệt x, r, thỏa mãn 2x, +3x, = 5.
f) Tìm m để PT có nghiệm x, =-3. Tính nghiệm còn lại.
g) Tìm biểu thúức liên hệ giữa hai nghiệm phân biệt x,,x, không phụ thuộc vào m.
GIÚP MÌNH GẤP VỚI Ạ MÌNH ĐANG CẦN GẤP ;<
c: Thay m=-2 vào pt, ta được:
\(x^2-2x+1=0\)
hay x=1
f: Thay x=-3 vào pt, ta được:
\(9-3m+m+3=0\)
=>-2m+12=0
hay m=6
tìm m để \(x^3+3x^2+\left(1-m\right)x+1\ge0\) ( mọi x >=0)
tìm m để pt có 2ng phân biệt \(\sqrt{x^2+mx+2}=2x+1\)
a.
\(\Leftrightarrow x^3+3x^2+x+1\ge mx\) ; \(\forall x\ge0\) (1)
- Với \(x=0\) thỏa mãn
- Với \(x>0\)
(1) \(\Leftrightarrow x^2+3x+1+\dfrac{1}{x}\ge m\)
\(\Leftrightarrow m\le\min\limits_{x>0}\left(x^2+3x+1+\dfrac{1}{x}\right)\)
Xét \(f\left(x\right)=x^2+3x+1+\dfrac{1}{x}\) với \(x>0\)
\(f'\left(x\right)=2x+3-\dfrac{1}{x^2}=0\Leftrightarrow\dfrac{\left(2x-1\right)\left(x+1\right)^2}{x^2}=0\Rightarrow x=\dfrac{1}{2}\)
Từ BBT ta thấy \(f\left(x\right)_{min}=f\left(\dfrac{1}{2}\right)=\dfrac{19}{4}\)
\(\Rightarrow m\le\dfrac{19}{4}\)
b.
Bài toán thỏa mãn khi:
\(x^2+mx+2=\left(2x+1\right)^2\Leftrightarrow3x^2-\left(m-4\right)x-1=0\) (1) có 2 nghiệm pb thỏa mãn \(-\dfrac{1}{2}\le x_1< x_2\) (2)
Do \(ac=-3< 0\) nên (1) luôn có 2 nghiệm pb
Để 2 nghiệm của (1) thỏa mãn (2) thì:
\(\left\{{}\begin{matrix}\left(x_1+\dfrac{1}{2}\right)\left(x_2+\dfrac{1}{2}\right)\ge0\\\dfrac{x_1+x_2}{2}>-\dfrac{1}{2}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x_1x_2+\dfrac{1}{2}\left(x_1+x_2\right)+\dfrac{1}{4}\ge0\\x_1+x_2>-1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}-\dfrac{1}{3}+\dfrac{m-4}{6}+\dfrac{1}{4}\ge0\\\dfrac{m-4}{3}>-1\end{matrix}\right.\) \(\Rightarrow m\ge\dfrac{9}{2}\)
(1) \(b=\left(\frac{1}{\sqrt{x}}+\frac{\sqrt{x}}{\sqrt{x}+1}\right):\frac{\sqrt{x}}{x+\sqrt{x}},x>0\)
rút gọn + tìm giá trị nhỏ nhất
(2)
\(\hept{\begin{cases}mx+y=2\\4x+my=5\end{cases}}\)
(a) giải hệ khi =1
(b) tìm M để hệ có nghiệm duy nhất
(3)
\(\hept{\begin{cases}x+2y=5\\mx+y=4\end{cases}}\)
a) tim M để hệ pt có nghiệm duy nhất mà x và y trái dấu
b) tìm m để hệ pt có nghiệm duy nhất mà x= trị tuyệt đối của y
(4)
\(\hept{\begin{cases}mx+y=2m\\x-y=1\end{cases}}\)
tìm số nguyên m sao cho hệ có 1 nghiệm mà x và y đều là số nguyên
(5) \(\left(m-2\right)x^2-mx+2=0\)
tìm m để pt có 2 nghiệm phân biệt
(6)
\(x^2-mx+m-2=0\)
tìm m để pt có 2 nghiệm phân biệt x1 và x2 mà (x1)^2+(x)^2=7
b) tìm m dể pt có 2 nghiệm phân biệt mà (x1)^3+(x2)^3=18
thế này thì 5 năm sau chắc hs lp 1 cng ko nghĩ ra mất
mấy bài này học từ mẫu giáo bé nhé , nhưng ở olm ko có toán lp mẫu giáo nên chúa để lp1 có vấn đề gì à
tìm m để pt sau có 2 nghiệm phân biệt
a, mx^4+5x^2-1=0
b,(m+2)x^4+3x^2-1=0
a:
TH1: m=0
=>5x^2-1=0(nhận)
TH2: m<>0
Đặt x^4=a
=>ma^2+5a-1=0
Δ=5^2-4*m*(-1)=25+4m
Để phương trình có hai nghiệm phân biệt thì 4m+25>0
=>m>-25/4
b: TH1: m=-2
=>3x^2-1=0(nhận)
TH2: m<>-2
Đặt x^2=a
=>(m+2)*a^2+3a-1=0
Δ=3^2-4(m+2)*(-1)=4m+8+9=4m+17
Để pt có 2 nghiệm pb thì 4m+17>0
=>m>-17/4
có 2 nghiệm phân biệt
tìm m để pt sau có 3 nghiệm phân biệt: 4x^3 - 3x + 1 = mx - m + 2