Giúppp emm vớiiii
Các cao nhân giỏi toán giúp emm với,emm đg cần gấp
Hứa tick cho các cao nhân
Mauuu giúp mk vớiiii
Giúppp
\(a,=\left(-\dfrac{1}{3}\right)^3=-\dfrac{1}{27}\\ b,=\left(-2\right)^6=2^6=64\\ c,=5^6:5^2=5^4=625\)
\(a,\left(-\dfrac{1}{3}\right)^2.\left(-\dfrac{1}{3}\right)=-\dfrac{1}{3}\)
\(b,\left(-2\right)^2.\left(-2\right)^4=\left(-2\right)^6\)
\(c,25^3:5^2=5^6:5^2=5^3\)
a.(-1/3)^2.(-1/3)=(-1/3)^3
b.(-2)^2.(-2)^4=(-2)^6
c.25^3:5^2=5^6:5^2=5^4
ht
giúppp
\(\dfrac{4}{5}\) x ( \(\dfrac{5}{6}\) + \(\dfrac{1}{6}\))
\(\dfrac{4}{5}\) x 1
\(\dfrac{4}{5}\)
Giúppp
\(a,\dfrac{-4}{5}+\dfrac{2}{7}-\dfrac{1}{5}-\dfrac{9}{7}=\left(\dfrac{-4}{5}-\dfrac{1}{5}\right)+\left(\dfrac{2}{7}-\dfrac{9}{7}\right)=-1+\left(-1\right)=-2\)
\(b,\dfrac{1}{12}-\left(\dfrac{1}{2}+\dfrac{7}{12}\right)=\dfrac{1}{12}-\left(\dfrac{6}{12}+\dfrac{7}{12}\right)=\dfrac{1}{12}-\dfrac{13}{12}=\dfrac{-12}{12}=-1\)
\(c,\dfrac{-12}{5}-\left(\dfrac{3}{5}-\dfrac{1}{8}\right)=\dfrac{-12}{5}-\left(\dfrac{24}{40}-\dfrac{5}{40}\right)=\dfrac{-12}{5}-\dfrac{19}{40}=\dfrac{-96}{40}-\dfrac{16}{40}=\dfrac{-100}{40}=\dfrac{-5}{2}\)
\(d,\dfrac{-5}{7}-\left(\dfrac{-7}{6}+\dfrac{2}{7}\right)+\dfrac{7}{-6}=\dfrac{-5}{7}+\dfrac{7}{6}-\dfrac{2}{7}+\dfrac{-7}{6}=\left(\dfrac{-5}{7}-\dfrac{2}{7}\right)+\left(\dfrac{7}{6}+\dfrac{-7}{6}\right)=-1\)
\(e,\dfrac{-6}{5}-\dfrac{2}{7}+\dfrac{1}{5}-\dfrac{5}{7}=\left(\dfrac{-6}{5}+\dfrac{1}{5}\right)+\left(\dfrac{-2}{7}-\dfrac{5}{7}\right)=-1+\left(-1\right)=-2\)
\(a,-\dfrac{4}{5}+\dfrac{2}{7}-\dfrac{1}{5}-\dfrac{9}{7}\)
\(=\dfrac{2}{7}-\dfrac{9}{7}-\dfrac{4}{5}-\dfrac{1}{5}\)
\(=-\dfrac{7}{7}-\dfrac{5}{5}\)
\(=-1-1=-2\)
\(b,\dfrac{1}{12}-\left(\dfrac{1}{2}+\dfrac{7}{12}\right)\)
\(=\dfrac{1}{12}-\dfrac{7}{12}-\dfrac{1}{2}\)
\(=-\dfrac{6}{12}-\dfrac{1}{2}=-1\)
\(c,-\dfrac{12}{5}-\left(\dfrac{3}{5}-\dfrac{1}{8}\right)\)
\(=-\dfrac{12}{5}-\dfrac{3}{5}+\dfrac{1}{8}\)
\(=-\dfrac{15}{5}+\dfrac{1}{8}\)
\(=-3+\dfrac{1}{8}=-\dfrac{23}{8}\)
\(d,-\dfrac{5}{7}-\left(-\dfrac{7}{6}+\dfrac{2}{7}\right)+\dfrac{7}{-6}\)
=\(-\dfrac{5}{7}+\dfrac{7}{6}-\dfrac{2}{7}-\dfrac{7}{6}\)
\(=-\dfrac{5}{7}-\dfrac{2}{7}\)
\(=-\dfrac{7}{7}=-1\)
\(e.-\dfrac{6}{5}-\dfrac{2}{7}+\dfrac{1}{5}-\dfrac{5}{7}\)
\(=-\dfrac{6}{5}+\dfrac{1}{5}-\dfrac{2}{7}-\dfrac{5}{7}\)
\(=\dfrac{5}{5}-\dfrac{7}{7}\)
\(=1-1=0\)
Giúppp
a: \(=\dfrac{3}{13}\left(\dfrac{6}{11}+\dfrac{9}{11}-\dfrac{4}{11}\right)+1+\dfrac{10}{13}=\dfrac{3}{13}+\dfrac{10}{13}+1=2\)
b: \(=4\left(2.86+3.14\right)-25\cdot6.01+9\cdot0.75\)
=4*6-25*6,01+9*0,75
=-119,5
c: \(=\dfrac{10}{11}+\dfrac{1}{11}-\dfrac{1}{8}+\dfrac{15}{4}=\dfrac{7}{8}+\dfrac{15}{4}=\dfrac{7+30}{8}=\dfrac{37}{8}\)
d: \(=\dfrac{-3}{31}-\dfrac{28}{31}-\dfrac{6}{17}-\dfrac{11}{17}+\dfrac{1}{25}-\dfrac{5}{25}=\dfrac{-4}{25}-2=-\dfrac{54}{25}\)
Giúppp
Giúppp={{{
\(1.678\simeq1.68;1.734\simeq1.73\)
\(2.014\simeq2.01;2.536\simeq2.54\)
\(2.834\simeq2.83;2.927\simeq2.93\)
Giúppp
đề bài ko có số điện tiêu thụ thì làm sao tính đc ơi
giúppp mình vs m.n
Bài 1:
a) \(\dfrac{5x-6}{2x-1}=\dfrac{3x}{x-2}\) (1)
ĐK:\(\left\{{}\begin{matrix}2x-1\ne0\\x-2\ne0\end{matrix}\right.\) ⇔\(\left\{{}\begin{matrix}x\ne\dfrac{1}{2}\\x\ne2\end{matrix}\right.\)
(1) ⇒\(\dfrac{\left(5x-6\right)\left(x-2\right)}{\left(2x-1\right)\left(x-2\right)}=\dfrac{3x\left(2x-1\right)}{\left(2x-1\right)\left(x-2\right)}\)
⇔\(5x^2-10x-6x+12=6x^2-3x\)
⇔\(5x^2-10x-6x+12-6x^2+3x=0\)
⇔\(-x^2-13+12=0\)
⇔\(\left[{}\begin{matrix}x=\dfrac{-13+\sqrt{217}}{2}\\x=\dfrac{-13-\sqrt{217}}{2}\end{matrix}\right.\left(TM\right)\)
KL:
Bạn nên đăng vào lớp 9 để nhận được nhiều sự trợ giúp hơn nhé !
Bài 1: b) \(\dfrac{7x}{2x+2}=\dfrac{3x+1}{x-5}\) (2)
ĐK: \(\left\{{}\begin{matrix}2x+2\ne0\\x-5\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ne-1\\x\ne5\end{matrix}\right.\)
(2)⇒ \(\dfrac{7x\left(x-5\right)}{\left(2x+2\right)\left(x-5\right)}=\dfrac{\left(3x+1\right)\left(2x+2\right)}{\left(2x+2\right)\left(x-5\right)}\)
\(\Leftrightarrow7x^2-35x=6x^2+6x+2x+2\)
\(\Leftrightarrow7x^2-35x-6x^2-6x-2x-2=0\)
\(\Leftrightarrow x^2+27x-2=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{-27+\sqrt{737}}{2}\\x=\dfrac{-27+\sqrt{737}}{2}\end{matrix}\right.\left(TM\right)\)
KL: