\(3\sqrt{x+5}+3\sqrt{5-11x}=x^2+3x+20\)
\(3\sqrt{x+5}+3\sqrt{5-11x}=x^2+3x+20\)
giải phương trình :
a, \(\sqrt{x+1}+x+3=\sqrt{1-x}+3\sqrt{1-x^2}\)
b,\(\left(2x-3\right)\sqrt{3+x}+2x\sqrt{3-x}=6x-8+\sqrt{9-x^2}\)
c, \(2x^2-5x+22=5\sqrt{x^3-11x +20}\)
d, \(x^3-3x^2+2\sqrt{\left(x+2\right)^3}=6x\)
\(\sqrt{2X^2+3X-2}-3\sqrt{X+6}=4-\sqrt{2X^2+11X-6}+3\sqrt{X+2}\)
\(\sqrt{3X^2-7X+3}-\sqrt{X^2-2}=\sqrt{3X^2-5X-1}-\sqrt{X^2-3X+4}\)
\(8x^2+\sqrt{3x^2+6x+5}=74-\sqrt{36x-5}\)
Cho A = \(\frac{2x+15\sqrt{x}+18}{x+3\sqrt{x}-18}+\frac{3x+4\sqrt{x}+1}{2x-3\sqrt{x}-5}-\frac{8x-15\sqrt{x}}{2x\sqrt{x}-11x+5\sqrt{x}}\)
Tính A tại \(x=\sqrt[3]{2+\sqrt{5}}+\sqrt[3]{2-\sqrt{5}}\)
Giải pt : a) \(\sqrt[3]{x^2-1}+x=\sqrt{x^3-1}\)
b) \(\sqrt{2x^2+3x+5}+\sqrt{2x^2-3x+5}=3x\)
c) \(2x^2-11x+2x=3\sqrt[3]{4x-4}\)
Bạn coi lại đề câu a và câu c
b/ Đặt \(\left\{{}\begin{matrix}\sqrt{2x^2+3x+5}=a>0\\\sqrt{2x^2-3x+5}=b>0\end{matrix}\right.\) \(\Rightarrow a^2-b^2=6x\Rightarrow3x=\frac{a^2-b^2}{2}\)
Phương trình trở thhành:
\(a+b=\frac{a^2-b^2}{2}\Leftrightarrow2\left(a+b\right)=\left(a+b\right)\left(a-b\right)\)
\(\Leftrightarrow a-b=2\Rightarrow a=b+2\)
\(\Leftrightarrow\sqrt{2x^2+3x+5}=\sqrt{2x^2-3x+5}+2\)
\(\Leftrightarrow2x^2+3x+5=2x^2-3x+5+4+4\sqrt{2x^2-3x+5}\)
\(\Leftrightarrow3x-2=2\sqrt{2x^2-3x+5}\) (\(x\ge\frac{2}{3}\))
\(\Leftrightarrow9x^2-12x+4=4\left(2x^2-3x+5\right)\)
\(\Leftrightarrow x^2=16\Rightarrow x=4\)
@Akai Haruma, @Nguyễn Việt Lâm, @Nguyễn Thị Diễm Quỳnh, @Hoàng Tử Hà, @Bonking
Giúp mk vs!
a) \(\sqrt{3x^2-4x-4}\) =\(\sqrt{2x+5}\)
b) \(\sqrt{\left(x-3\right)\left(8-x\right)}+26=-x^2+11x\)
ĐK: \(x\ge-\dfrac{5}{2}\)
\(\Leftrightarrow3x^2-4x-4=2x+5\)
\(\Leftrightarrow3x^2-6x-9=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=3\end{matrix}\right.\) (thỏa mãn)
b.
ĐKXĐ: \(3\le x\le8\)
\(\Leftrightarrow-x^2+11x-24-\sqrt{-x^2+11x-24}-2=0\)
Đặt \(\sqrt{-x^2+11x-24}=t\ge0\)
\(\Rightarrow t^2-t-2=0\Rightarrow\left[{}\begin{matrix}t=-1\left(loại\right)\\t=2\end{matrix}\right.\)
\(\Leftrightarrow\sqrt{-x^2+11x-24}=2\)
\(\Leftrightarrow-x^2+11x-28=0\Rightarrow\left[{}\begin{matrix}x=7\\x=4\end{matrix}\right.\)
Giải phương trình:
a) \(\sqrt{x}+\sqrt{2-x}=\dfrac{3x^2-2x+3}{x^2+1}\)
b) \(x^3-11x^2+36x-18=4\sqrt[4]{27x-54}\)
c) \(16x^4+5=6\sqrt[3]{4x^3+x}\)
d) \(\dfrac{1}{\sqrt{2x-1}}+\dfrac{1}{\sqrt[4]{4x-3}}=\dfrac{2}{x}\)
b, \(đk:x\ge2\)
Xét x=2 thay vào pt thấy không thỏa mãn => x>2 hay 27x-54>0
\(x^3-11x+36x-18=4\sqrt[4]{27x-54}\)
\(\Leftrightarrow27x^3-297x^2+972x-486=4\sqrt[4]{\left(27x-54\right).81.81.81}\le189+27x\) (cosi với 4 số dương, dấu = xảy ra khi x=5)
\(\Leftrightarrow x^3-11x^2+35x-25\le0\)
\(\Leftrightarrow\left(x-1\right)\left(x-5\right)^2\le0\) (*)
Có \(\left\{{}\begin{matrix}x>2\\\left(x-5\right)^2\ge0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x-1>0\\\left(x-5\right)^2\ge0\end{matrix}\right.\)\(\Rightarrow\left(x-1\right)\left(x-5\right)^2\ge0\) (2*)
Từ (*) và (2*) ,dấu = xra khi x=5 (thỏa mãn)
Vây pt có nghiệm duy nhất x=5
c,Có \(6\sqrt[3]{4x^3+x}=16x^4+5>0\)
\(\Leftrightarrow4x^3+x>0\)
Có: \(16x^4+5=6\sqrt[3]{4x^3+x}\le2\left(4x^3+x+2\right)\) (theo cosi với 3 số dương,dấu = xảy ra khi \(x=\dfrac{1}{2}\))
\(\Leftrightarrow16x^4-8x^3-2x+1\le0\)
\(\Leftrightarrow\left(2x-1\right)^2\left(4x^2+2x+1\right)\le0\) (*)
(tương tự câu b) Dấu = xảy ra khi \(x=\dfrac{1}{2}\)(thỏa mãn)
Vậy....
d) Đk: \(x\ge\dfrac{3}{4}\)
Áp dụng bđt cosi:
\(\sqrt{2x-1}\le\dfrac{2x-1+1}{2}=x\)
\(\Rightarrow\dfrac{1}{\sqrt{2x-1}}\ge\dfrac{1}{x}\) (*)
\(\sqrt[4]{4x-3}\le\dfrac{4x-3+1+1+1}{4}=x\)
\(\dfrac{\Rightarrow1}{\sqrt[4]{4x-3}}\ge\dfrac{1}{x}\) (2*)
Từ (*) và (2*) \(\Rightarrow\dfrac{1}{\sqrt{2x-1}}+\dfrac{1}{\sqrt[4]{4x-3}}\ge\dfrac{2}{x}\)
Dấu = xảy ra khi x=1 (tm)
`a)\sqrtx+\sqrt{2-x}=(3x^2-2x+3)/(x^2+1)`
`đk:0<=x<=2`
`pt<=>sqrtx-1+\sqrt{2-x}-1=(3x^2-2x+3)/(x^2+1)-2`
`<=>(x-1)/(sqrtx+1)+(1-x)/(sqrt{2-x}+1)=(x^2-2x+1)/(x^2+1)`
`<=>(x-1)/(sqrtx+1)+(1-x)/(sqrt{2-x}+1)=(x-1)^2/(x^2+1)`
`<=>(x-1)((x-1)/(x^2+1)+1/(sqrt{2-x}+1)-1/(sqrtx+1))=0`
`<=>x-1=0<=>x=1`
Vậy `S={1}`
Giải phương trình bằng phương pháp bất đẳng thức
1, \(\sqrt{x^2-6x+11}+\sqrt{x^2-6x+13}+\sqrt[4]{x^2-4x+5}=3+\sqrt{2}\)
2, \(\sqrt{x-10}+\sqrt{30-x}=x^2-40x+400+2\sqrt{10}\)
3, \(x^2-3x+3,5=\sqrt{\left(x^2-2x+2\right)\left(x^2-4x+5\right)}\)
4, \(\sqrt{5x^3+3x^2+3x-2}=\dfrac{x^2}{2}+3x-\dfrac{1}{2}\)
5, \(2\sqrt{7x^3-11x^2+25x-12}=x^2+6x-1\)
@Nguyễn Huy Thắng@Mysterious Person@bảo nam trần@Lightning Farron@Thiên Thảo@Sky SơnTùng
tìm x biết
\(2x^2+5x+8+\sqrt{x}=x^2+3x+35+x^2+2x-7\)
\(3\sqrt{x}+7x+5=\sqrt{x}+4x-6+3x+18\)
\(2\sqrt{3x}+11x-18=5x+2+6\cdot\sqrt{3x}+6x-21\)