Với x>0 tìm GTNN của phân thức sau
(x^2+2x+3)(x^2+2x+9)/x^2+2x+1
1) cho x>0,y>0 thỏa mãn x+y=1.tìm GTNN của biểu thức P= 1/xy+2/x^2+y^2
2)cho x>0,y>0 và x+y=1.tìm GTNN của M=3/xy+2/x^2+y^2
3)tìm GTNN và GTLN của
N= 2x+1/x^2+2
Q= 2x^2-2x+9/x^2+2x+5
R=2(x^2+x+1)/x^2+1
Cho phân thức: \(P=\dfrac{x^4+x^3-x^2-2x-2}{x^4+2x^3-x^2-4x-2}\)
a, Rút gọn phân thức P
b, Với x > 0. Tìm giá trị của x để phân thức P có GTNN.
I) THỰC HIỆN PHÉP TÍNH a) 2x(x^2-4y) b)3x^2(x+3y) c) -1/2x^2(x-3) d) (x+6)(2x-7)+x e) (x-5)(2x+3)+x II phân tích đa thức thành nhân tử a) 6x^2+3xy b) 8x^2-10xy c) 3x(x-1)-y(1-x) d) x^2-2xy+y^2-64 e) 2x^2+3x-5 f) 16x-5x^2-3 g) x^2-5x-6 IIITÌM X BIẾT a)2x+1=0 b) -3x-5=0 c) -6x+7=0 d)(x+6)(2x+1)=0 e)2x^2+7x+3=0 f) (2x-3)(2x+1)=0 g) 2x(x-5)-x(3+2x)=26 h) 5x(x-1)=x-1 IV TÌM GTNN,GTLN. a) tìm giá trị nhỏ nhất x^2-6x+10 2x^2-6x b) tìm giá trị lớn nhất 4x-x^2-5 4x-x^2+3
Giải như sau.
(1)+(2)⇔x2−2x+1+√x2−2x+5=y2+√y2+4⇔(x2−2x+5)+√x2−2x+5=y2+4+√y2+4⇔√y2+4=√x2−2x+5⇒x=3y(1)+(2)⇔x2−2x+1+x2−2x+5=y2+y2+4⇔(x2−2x+5)+x2−2x+5=y2+4+y2+4⇔y2+4=x2−2x+5⇒x=3y
⇔√y2+4=√x2−2x+5⇔y2+4=x2−2x+5, chỗ này do hàm số f(x)=t2+tf(x)=t2+t đồng biến ∀t≥0∀t≥0
Công việc còn lại là của bạn !
\(\left(x+6\right)\left(2x+1\right)=0\)
<=> \(\orbr{\begin{cases}x+6=0\\2x+1=0\end{cases}}\)
<=> \(\orbr{\begin{cases}x=-6\\x=-\frac{1}{2}\end{cases}}\)
Vậy....
hk tốt
^^
Bài 1: Tìm điều kiện để các phân thức sau có ý nghĩa
a)5x-3/2x^2-x b)x^2-5x+6/x^2-1
c)2/(x+1)(x-3) d)2x+1/x^2-5x+6
Bài 2: Dùng định nghĩa hai phân thức bằng nhau chứng minh các đẳng thức sau:
a)x-2/-x=2^3-x^3/x(x^2+2x+4) (với x =/0)
b)3x/x+y=-3x(x+y)/y^2-x^2 (với x=/ +_ y)
c)x+y/3a=3a(x+y^2)/9a^2(x+y) (với a=/ 0,x=/-y)
Bài 1:
c: ĐKXĐ: \(x\notin\left\{-1;3\right\}\)
1) Cho biểu thức A= (2x-9)/(x^2-5x+6) - (x+3)/(x-2) + (2x+4)/(x-3) với x khác 2 và 3
a) Rút gọn biểu thức A
b) Tìm các giá trị của x để A=2
2) Phân tích đa thức sau thành nhân tử: x^4 + 2yx^2 + y^2 -9
1.
\(A=\dfrac{2x-9}{\left(x-2\right)\left(x-3\right)}-\dfrac{\left(x-3\right)\left(x+3\right)}{\left(x-2\right)\left(x-3\right)}+\dfrac{\left(2x+4\right)\left(x-2\right)}{\left(x-2\right)\left(x-3\right)}\)
\(=\dfrac{2x-9-\left(x^2-9\right)+\left(2x^2-8\right)}{\left(x-2\right)\left(x-3\right)}\)
\(=\dfrac{x^2+2x-8}{\left(x-2\right)\left(x-3\right)}=\dfrac{\left(x-2\right)\left(x+4\right)}{\left(x-2\right)\left(x-3\right)}\)
\(=\dfrac{x+4}{x-3}\)
b.
\(A=2\Rightarrow\dfrac{x+4}{x-3}=2\Rightarrow x+4=2\left(x-3\right)\)
\(\Rightarrow x=10\) (thỏa mãn)
2.
\(x^4+2x^2y+y^2-9=\left(x^2+y\right)^2-3^2=\left(x^2+y-3\right)\left(x^2+y+3\right)\)
Bài 1: Tìm x: (2x-6)^3 + (5-x)^3 + (1-x)^3 = 0
Bài 2: Tìm GTNN :
A= x^2 -2x -4
B= x^2 -x +5
C= 4x^2 +2x -9
D= 2x^2 -4x +7
Giúp tớ với, tớ đang cần gấp
Bài 2: Tìm GTNN :
A= x^2 -2x -4 = x^2 - 2x + 1-1 -4 = (x-1)^2 - 5
A >/ -5
MinA = -5
B= x^2 -x +5= x^2 - x + 1/4 - 1/4 +5 = (x-1/2)^2 + 19/4
B >/ 19/4
MinB = 19/4
C= 4x^2 +2x -9= (2x)^2 + 2x + 1/4 - 1/4 -9 = (2x+1/2)^2 - 37/4
C >/ -37/4
MinC= -37/4
\(D=2x^2-4x+7=\left(\sqrt{2}x\right)^2-2\cdot\sqrt{2}x\cdot\sqrt{2}+2-2+7=\left(\sqrt{2}x-\sqrt{2}\right)^2+5\)
D >/ 5
MinD = 5
I. Nội qui tham gia "Giúp tôi giải toán"
1. Không đưa câu hỏi linh tinh lên diễn đàn, chỉ đưa các bài mà mình không giải được hoặc các câu hỏi hay lên diễn đàn;
2. Không trả lời linh tinh, không phù hợp với nội dung câu hỏi trên diễn đàn.
3. Không "Đúng" vào các câu trả lời linh tinh nhằm gian lận điểm hỏi đáp.
Các bạn vi phạm 3 điều trên sẽ bị giáo viên của Online Math trừ hết điểm hỏi đáp, có thể bị khóa tài khoản hoặc bị cấm vĩnh viễn không đăng nhập vào trang web.
tôi mong các bn ko làm như vậy
tìm gtnn cua phân thức sau biết x>3 :
x^2+2x-9
--------------
x-3
bài 1)tìm GTNN của biểu thức 3(2x+9)^2-1
bài 2 giá trị a<0 biết (x-a)(x+a)=x^2-169
Bài 1
(2x + 9)2 > 0
3(2x + 9)2 > 0
3(2x + 9)2 - 1 > - 1
Vậy GTNN của biểu thức là - 1
Bài 2
(x - a)(x + a) = x2 - 169
x2 - a2 = x2 - 169
a2 = 169
mà a < 0
nên a = - 13
Tìm điều kiện của x để phân thức sau xác định;
a)\(\dfrac{\dfrac{1}{x-4}}{2x+2}\)
b)\(\dfrac{x^3+2x}{4x^2-25}\)
c)\(\dfrac{2x^2+2x}{8x^3+27}\)
d)\(\dfrac{2x+1}{\left(2x+2\right)\left(4y^2-9\right)}\)
`a,ĐKXĐ:x-4 ne 0,2x+2 ne 0`
`<=>x ne 4,x me -1`
`b,ĐKXĐ:4x^2-25 ne 0`
`<=>(2x-5)(2x+5) ne 0`
`<=>x ne +-5/2`
`c,ĐKXĐ:8x^3+27 ne 0`
`<=>8x^3 ne -27`
`<=>2x ne -3`
`<=>x ne -3/2`
`d,2x+2 ne 0,4y^2-9 ne 0`
`<=>2x ne -2,(2y-3)(2y+3) ne 0`
`<=>x ne -1,y ne +-3/2`
b) ĐKXĐ: \(x\notin\left\{\dfrac{5}{2};-\dfrac{5}{2}\right\}\)
c) ĐKXĐ: \(x\ne-\dfrac{3}{2}\)
d) ĐKXĐ: \(\left\{{}\begin{matrix}x\ne-1\\y\notin\left\{\dfrac{3}{2};-\dfrac{3}{2}\right\}\end{matrix}\right.\)