3x^2-3xy-5x+5y
3x2-5y-3xy-5x
\(3x^2-5y-3xy-5x\)
\(=\left(3x^2-3xy\right)-\left(5y-5x\right)\)
\(=3x\left(x-y\right)-5\left(y-x\right)\)
\(=3\left(x-y\right)-5\left(x-y\right)\)
\(=\left(x-y\right)\left(3-5\right)\)
a)14x^2y-21xy^2+28x^2y^2
b)3x^2-3xy-5x+5y
a,7xy(2x-3y+4xy)
b,(3x^2-5x)-(3xy-5y)
=x(3x-5)-y(3x-5)
=(3x-5)(x-y)
1,tính:
1/5 x2y ( 15xy2 - 5y + 3xy)
2,phân tích đa thức thành nhân tử:
a,5x3 - 5x
b, 3x2 + 5y - 3xy - 5x
a,\(\frac{1}{5}x^2y\left(15xy^2-5y+3xy\right)=3x^3y^3-x^2y^2+\frac{3}{5}x^3y^2\)
b,\(5x^3-5x=5x\left(x^2-1\right)=5x\left(x-1\right)\left(x+1\right)\)
c, \(3x^2+5y-3xy-5x=3x\left(x-y\right)-5\left(x-y\right)\)
\(=\left(3x-5\right)\left(x-y\right)\)
1) 1/5x2y( 15xy2 - 5y + 3xy ) = 3x3y3 - x2y2 + 3/5x3y2
2) a) 5x3 - 5x = 5x( x2 - 1 ) = 5x( x2 - 12 ) = 5x( x - 1 )( x + 1 )
b) 3x2 + 5y - 3xy - 5x = ( 3x2 - 3xy ) + ( 5y - 5x )
= 3x( x - y ) + 5( y - x )
= 3x( x - y ) + 5[ -( x - y ) ]
= 3x( x - y ) - 5( x - y )
= ( 3x - 5 )( x - y )
Bài 1 :
\(15x^2y\left(15xy^2-5y+3xy\right)=3x^3y^3-x^2y^2+\frac{3}{5}x^3y^2\)
Bài 2 :
\(5x^3-5x=5x\left(x+1\right)\left(x-1\right)\)
phân tích đa thức sau thành nhân tử: (3x^2-3xy)-(5x-5y)
\(\left(3x^2-3xy\right)-\left(5x-5y\right)\)
\(=3x\left(x-y\right)-5\left(x-y\right)\)
\(=\left(x-y\right)\left(3x-5\right)\)
\(\left(3x^2-3xy\right)-\left(5x-5y\right)\)
=\(3x\left(x-y\right)-5\left(x-y\right) \)
=\(\left(x-y\right)\left(3x-5\right)\)
A,X2-xy +x-y
B, 3x2-3xy-5x +5y
a) \(x^2-xy+x-y=\left(x^2-xy\right)+\left(x-y\right)\)
\(=x\left(x-y\right)+\left(x-y\right)=\left(x+1\right)\left(x-y\right)\)
b) \(3x^2-3xy-5x+5y=\left(3x^2-3xy\right)-\left(5x-5y\right)\)
\(=3x\left(x-y\right)-5\left(x-y\right)=\left(3x-5\right)\left(x-y\right)\)
phân tích đa thức sau thành nhân tử:
3x^2 + 5y - 3xy - 5x
\(=\left(3x^2-3xy\right)+\left(5y-5x\right)\)
\(=3x\left(x-y\right)+5\left(y-x\right)\)
\(=3x\left(x-y\right)-5\left(x-y\right)\)
\(=\left(3x-5\right)\left(x-y\right)\)
Ta có:
\(3x^2+5y-3xy-5x\)
\(=\left(3x^2-3xy\right)+\left(5y-5x\right)\)
\(=3x\left(x-y\right)-5\left(x-y\right)\)
\(=\left(3x-5\right)\left(x-y\right)\)
\(3x^2+5y-3xy+5x\)
\(=\)\(\left(3x^2-3xy\right)+\left(5y-5x\right)\)
\(=\)\(3x\left(x-y\right)-5\left(x-y\right)\)
\(=\left(3x-5\right)\left(x-y\right)\)
phân tích các đa thức sau thành nhân tử:
a)14x^2y-21xy^2+28x^2y^2
b)3x^2-3xy-5x+5y
a) \(14x^2y-21xy^2+28x^2y^2=7xy\left(2x-3y+4xy\right)\)
b) \(3x^2-3xy-5x+5y=3x\left(x-y\right)-5\left(x-y\right)=\left(3x+5\right)\left(x-y\right)\)
bài 2: Phân tích các đa thức sau thành nhân tử
a. 3x^2+5y-3xy-5x
b. 3y^2-3z^2+3x^2+6xy
c.x^2-25-2xy+y^2
d.5x^2-10xy+5y^2-20z^2
e. x^2-5x+5y-y^2
f. 3x^2-6xy+3y^2-12z^2
a) Ta có: \(3x^2+5y-3xy-5x\)
\(=3x\left(x-y\right)-5\left(x-y\right)\)
\(=\left(x-y\right)\left(3x-5\right)\)
b) Ta có: \(3y^2-3z^2+3x^2+6xy\)
\(=3\left(y^2-z^2+x^2+2xy\right)\)
\(=3\left[\left(x+y\right)^2-z^2\right]\)
\(=3\left(x+y-z\right)\left(x+y+z\right)\)
c) Ta có: \(x^2-25-2xy+y^2\)
\(=\left(x-y\right)^2-5^2\)
\(=\left(x-y-5\right)\left(x-y+5\right)\)
d) Ta có: \(5x^2-10xy+5y^2-20z^2\)
\(=5\left(x^2-2xy+y^2-4z^2\right)\)
\(=5\left[\left(x-y\right)^2-\left(2z\right)^2\right]\)
\(=5\left(x-y-2z\right)\left(x-y+2z\right)\)
e) Ta có: \(x^2-5x+5y-y^2\)
\(=\left(x-y\right)\left(x+y\right)-5\left(x-y\right)\)
\(=\left(x-y\right)\left(x+y-5\right)\)
f) Ta có: \(3x^2-6xy+3y^2-12z^2\)
\(=3\left(x^2-2xy+y^2-4z^2\right)\)
\(=3\left[\left(x-y\right)^2-\left(2z\right)^2\right]\)
\(=3\left(x-y-2z\right)\left(x-y+2z\right)\)
phân tích thành nhân tử
b. x^2+2xy+y^2-16
c. 3x^2+5x-3xy-5y
d. 4x^2-6x^3y-2x^2+8x
e. x^2-4-2xy+y^2
k. x^2-y^2-z^2-2yz
m. 6xy+5x-5y-3x^2-3y^2
b)x2+2xy+y2-16=(x+y)2-42=(x+y+4)(x+y-4)
c)3x2+5x-3xy-5y=x(3x+5)-y(3x+5)=(3x+5)(x-y)
d)4x2-6x3y-2x2+8x=2x(2x-3x2y-x+4)
e)x2-4-2xy+y2=(x2-2xy+y2)-4=(x-y)2-22=(x-y-2)(x-y+2)
k)x2-y2-z2-2yz=x2-(y+z)2=(x-y-z)(x+y+z)
m)6xy+5x-5y-3x2-3y2=3(x2-2xy+y2)+5(x-y)=3(x-y)2+5(x-y)=(x-y)(3x-3y+5)
b. (x^2+2xy+y^2)-16 =(x+y)^2-16=(x+y+4)(x+y-4)