Cho a,b,c là số nguyên dương và a/b=b/c=c/a . Chứng minh rằng a=b=c.
Cho a, b, c là các số nguyên dương thoả mãn (a, b, c) = 1 và c = ab/a−b. Chứng minh rằng a−b là số chính phương
Cho a, b, c là các số nguyên dương. Chứng minh rằng: M=a/a+b + b/b+c + c/c+a không là số nguyên
ta cần chứng minh nó lớn hơn 1 và nhỏ hơn 2
Do a;b;c và d là các số nguyên dương =>
a + b + c < a + b + c + d
a + b + d < a + b + c + d
a + c + d < a + b + c + d
b + c + d < a + b + c + d
=> a/(a + b + c) > a/(a + b + c + d) (1)
b/(a + b + d) > b/(a + b + c + d) (2)
c/(b + c + d) > c/(a + b + c + d) (3)
d/(a + c + d) > d/(a + b + c + d) (4)
Từ (1);(2);(3) và (4)
=> a/(a + b + c) + b/(a + b + d) + c/(b + c + d) + d/(a + c + d) > a/(a + b + c + d) + b/(a + b + c + d) + c/(a + b + c + d) + d/(a + b + c + d)
=> a/(a + b + c) + b/(a + b + d) + c/(b + c + d) + d/(a + c + d) > (a + b + c + d)/(a + b + c + d)
=> a/(a + b + c) + b/(a + b + d) + c/(b + c + d) + d/(a + c + d) > 1
=> B > 1 (*)
Ta có: (a + b + c)(a + d) - a(a + b + c + d)
= a² + ad + ab + bd + ac + cd - (a² + ab + ac + ad)
= a² + ad + ab + bd + ac + cd - a² - ab - ac - ad
= bd + cd
Do a;b;c và d là số nguyên dương
=> bd + cd > 0
=> (a + b + c)(a + d) - a(a + b + c + d) > 0
=> (a + b + c)(a + d) > a(a + b + c + d)
=> (a + d)/(a + b + c + d) > a/(a + b + c) (5)
Chứng minh tương tự ta được:
(b + c)/(a + b + c + d) > b/(a + b + d) (6)
(a + c)/(a + b + c + d) > c/(b + c + d) (7)
(b + d)/(a + b + c + d) > d/(a + c + d) (8)
Cộng vế với vế của (5);(6);(7) và (8) ta được:
(a + d)/(a + b + c + d) + (b + c)/(a + b + c + d) + (a + c)/(a + b + c + d) + (b + d)/(a + b + c + d) > a/(a + b + c) + b/(a + b + d) + c/(b + c + d) + d/(a + c + d)
=> (a + d + b + c + a + c + b + d)/(a + b + c + d) > B
=> 2(a + b + c + d)/(a + b + c + d) > B
=> 2 > B (*)(*)
Từ (*) và (*)(*)
=> 1 < B < 2
=> B không phải là số nguyên
Ta có: a/a+b <a/a+b+c (1)
b/b+c <b/a+b+c (2)
c/c+a <c/a+b+c (3)
Từ (1),(2),(3) => a/a+b + b/b+c + c/c+a > a/a+b+c + b/a+b+c + c/a+b+c
= a+b+c/a+b+c
=1
VẬY : M>1
Ta có :
a/a+b < a+c/a+b+c (1)
b/b+c < b+a/a+b+c (2)
c/c+a < c+b/a+b+c (3)
Từ (1),(2),(3) => a/a+b + b/b+c + c/c+a < a+c/a+b+c + b+a/a+b+c + c+a/a+b+c
= 2.(a+b+c)/a+b+c
= 2
=> 1<M<2
=> M không phải là số nguyên
cho a,b,c là các số nguyên dương , chứng minh rằng : nếu c>1 thì a+b và b+c không thể đồng thời là số nguyên tố
Cho các số nguyên dương a, b, c thỏa mãn (a, b, c) = 1 và 1/a + 1/b = 1/c. Chứng minh rằng abc là số chính phương.
cho M=a/a+b+b/b+c+c/c+a với a, b,c là các số nguyên dương bất kì . Chứng minh rằng M không thể là số nguyên
M=a/a+b+b/b+c+c/c+a vs a,b,c lớn hơn 0
M=1+b+1+c+1+a=3+a,b,c
M là số nguyên
Ta có a/b+c+b/a+c+c/a+b > a/a+b+c+b/b+c+a+c/b+c+a=a+b+c/a+b+c=1
=>M>1
Lại có M=(1-b/a+b)+(1- c/b+c)+(1-c/a+c)<3-(b/a+b+c+c/b+c+a+a/c+a+b)=3-1=2
=>M < 2
do đo 1<M<2=>đpcm
Bn vào đây:http://olm.vn/hoi-dap/question/431454.html
Cho a, b, c là ba số nguyên dương thỏa mãn ab = c(a+b) và a, b nguyên tố cùng nhau. Chứng minh rằng abc là số chính phương.
cho x,y,z là các số nguyên dương và x +y+z là số lẻ, các số thực a,b,c thỏa mãn (a-b)/x=(b-c)/y= (a-c)/z chứng minh rằng a= b= c
Cho x,y,z là các số nguyên tố khác 2 và các số thực a,b,c thỏa mãn dãy tỉ số bằng nhau a-b/x=b-c/y=a-c/z.CMR a=b=c
Dễ thế mà chẳng ai làm được..
cho a, b, c, d là 4 số nguyên dương thỏa mãn: b=a+c/2 và 1/c=1/2.(1/b+1/d) Chứng minh rằng a/b=c/d
Cho 2 phân số a/b và c/b (a,b,c,d là các số nguyên dương).
Chứng minh rằng nếu a/b<c/d thì b/a>d/c
đề em viết chưa đủ dữ kiện
Cho các số nguyên dương a, b, c thỏa mãn (a,b,c) = 1 và \(\frac{ab}{a-b}\)= c. Chứng minh rằng a - b là số chính phương