Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Trần Anh
Xem chi tiết
Pro_Dragon
15 tháng 1 2020 lúc 20:03

Câu Hỏi:

* Hệ Phương Trình nào vậy bạn ?

Khách vãng lai đã xóa
Ngọc Khánh
5 tháng 2 2020 lúc 20:51

sao câu hỏi ko rõ ràng vậy  

Khách vãng lai đã xóa
Dang Tra My
5 tháng 2 2020 lúc 20:52

Mỗi ngày, cửa hàng được chuyển đến một số lượng sản phẩm như nhau, cuối ngày những sản phẩm chưa bán được chuyển hết về kho. Ngày thứ nhất cửa hàng bán được 12/81 số sản phẩm ở cửa hàng. Ngày thứ hai, cửa hàng bán được gấp hai lần số sản phẩm ngày thứ nhất bán được. Hỏi nếu mỗi ngày, cửa hàng chia đều số sản phẩm lên 27 kệ, thì số sản phầm bán được trong ngày thứ hai chiếm .......  kệ.

Khách vãng lai đã xóa
Thảo Bùi
Xem chi tiết
Phạm Trần Minh Ngọc
25 tháng 1 2017 lúc 11:28

gọi \(\frac{1}{2x-y}\)là \(a\)\(\frac{1}{x-2y}\)là \(b\)

Ta có hệ phương trình: \(\hept{\begin{cases}2a+3b=\frac{1}{2}\\2a-b=\frac{1}{18}\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}a=\frac{1}{12}\\b=\frac{1}{9}\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}\frac{1}{2x-y}=\frac{1}{12}\\\frac{1}{x-2y}=\frac{1}{9}\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}2x-y=12\\x-2y=9\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x=5\\y=-2\end{cases}}\)

Lê Minh Đức
Xem chi tiết
Nguyễn Phúc Lộc
Xem chi tiết
trần xuân quyến
Xem chi tiết
Hoàng Lê Bảo Ngọc
Xem chi tiết
phan tuấn anh
28 tháng 11 2016 lúc 21:19

mk nghĩ giải theo cách này 

đặt \(x^2+y^2=a\) và \(\frac{x}{y}=b\) thì hpt trở thành 

\(\hept{\begin{cases}\frac{3}{a-1}+\frac{2}{b}=1\\a-2b=4\end{cases}}\)<=> \(\hept{\begin{cases}a=2b+4\\\frac{3}{2b-3}+\frac{2}{b}=1\end{cases}}\)<=> \(\hept{\begin{cases}2b^2-4b-6=0\\a=2b+4\end{cases}}< =>\hept{\begin{cases}\orbr{\begin{cases}b=3\\b=-1\end{cases}}\\a=2b+4\end{cases}}\)

đến đây cậu tự giải nốt nhé 

nonolive
Xem chi tiết
Trần Lâm Thiên Hương
Xem chi tiết
lethienduc
Xem chi tiết
Thắng Nguyễn
7 tháng 1 2020 lúc 18:51

Hint: đặt \(\frac{1}{2x-y}=a;\frac{1}{x+y}=b\)

Khách vãng lai đã xóa
Thiên An
Xem chi tiết
alibaba nguyễn
18 tháng 2 2017 lúc 8:18

Đễ thấy \(x=y=z=0\) là 1 nghiệm của hệ

Xét \(\hept{\begin{cases}x\ne0\\y\ne0\\z\ne0\end{cases}}\)

Cộng 3 phương trình vế theo vế ta được

\(\frac{2x^2}{x^2+1}+\frac{2y^2}{y^2+1}+\frac{2z^2}{z^2+1}=x+y+z\)

Ta có: \(\frac{2x^2}{x^2+1}\le\frac{2x^2}{2x}=x\)

Tương tự: \(\hept{\begin{cases}\frac{2y^2}{y^2+1}\le y\\\frac{2z^2}{z^2+1}\le z\end{cases}}\)

Cộng vế theo vế ta được:

\(\frac{2x^2}{x^2+1}+\frac{2y^2}{y^2+1}+\frac{2z^2}{z^2+1}\le x+y+z\)

Dấu =  xảy ra khi \(x=y=z=1\)

Vậy nghiệm của hệ là: \(\left(x,y,z\right)=\left(0,0,0;1,1,1\right)\)

PS: Tính không làm đâu nhưng mà đồng hương nên giúp nhau vậy :D

Thắng Nguyễn
17 tháng 2 2017 lúc 22:54

nhìn hpt bự con thế này chắc xài BĐT giải r`, chờ mình tẹo :)