giải hệ phương trình
\(2x^2=y+\frac{1}{y}\)
\(2y^2=x+\frac{1}{x}\)
Giải hệ phương trình: \(\left\{{}\begin{matrix}\frac{2}{2x-y}+\frac{3}{x-2y}=\frac{1}{2}\\\frac{2}{2x-y}-\frac{1}{x-2y}=\frac{1}{18}\end{matrix}\right.\)
Câu Hỏi:
* Hệ Phương Trình nào vậy bạn ?
sao câu hỏi ko rõ ràng vậy
Mỗi ngày, cửa hàng được chuyển đến một số lượng sản phẩm như nhau, cuối ngày những sản phẩm chưa bán được chuyển hết về kho. Ngày thứ nhất cửa hàng bán được 12/81 số sản phẩm ở cửa hàng. Ngày thứ hai, cửa hàng bán được gấp hai lần số sản phẩm ngày thứ nhất bán được. Hỏi nếu mỗi ngày, cửa hàng chia đều số sản phẩm lên 27 kệ, thì số sản phầm bán được trong ngày thứ hai chiếm ....... kệ.
\(\hept{\begin{cases}\frac{2}{2x-Y}+\frac{3}{x-2y}=\frac{1}{2}\\\frac{2}{2x-Y}-\frac{1}{x-2y}=\frac{1}{18}\end{cases}}\)
Giải hệ phương trình
gọi \(\frac{1}{2x-y}\)là \(a\); \(\frac{1}{x-2y}\)là \(b\)
Ta có hệ phương trình: \(\hept{\begin{cases}2a+3b=\frac{1}{2}\\2a-b=\frac{1}{18}\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}a=\frac{1}{12}\\b=\frac{1}{9}\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}\frac{1}{2x-y}=\frac{1}{12}\\\frac{1}{x-2y}=\frac{1}{9}\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}2x-y=12\\x-2y=9\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=5\\y=-2\end{cases}}\)
Giải hệ phương trình: \(\hept{\begin{cases}x^2+\frac{1}{x}=y^2+\frac{1}{2y}\\2x^2-\frac{1}{x}=\frac{1}{2y}-2y^2\end{cases}}\)
Giải hệ phương trình: \(\hept{\begin{cases}\frac{x^2}{y^2+2y+1}+\frac{y^2}{x^2+2x+1}=\frac{1}{2}\\3xy-x-y=1\end{cases}}\)
giải hệ phương trình
\(\hept{\begin{cases}\frac{x^2}{y^2+2y+1}+\frac{y^2}{x^2+2x+1}=\frac{1}{2}\\3xy-1=x+y\end{cases}}\)
Giải hệ phương trình \(\hept{\begin{cases}\frac{3}{x^2+y^2-1}+\frac{2y}{x}=1\\x^2+y^2-\frac{2x}{y}=4\end{cases}}\)
mk nghĩ giải theo cách này
đặt \(x^2+y^2=a\) và \(\frac{x}{y}=b\) thì hpt trở thành
\(\hept{\begin{cases}\frac{3}{a-1}+\frac{2}{b}=1\\a-2b=4\end{cases}}\)<=> \(\hept{\begin{cases}a=2b+4\\\frac{3}{2b-3}+\frac{2}{b}=1\end{cases}}\)<=> \(\hept{\begin{cases}2b^2-4b-6=0\\a=2b+4\end{cases}}< =>\hept{\begin{cases}\orbr{\begin{cases}b=3\\b=-1\end{cases}}\\a=2b+4\end{cases}}\)
đến đây cậu tự giải nốt nhé
Giải Phương trình sau : \(\sqrt{x}-x\left(x-\frac{1}{2}\right)=\frac{1}{2x^3}-\frac{1}{2x\sqrt{x}}\)
giải hệ phương trình sau :\(\hept{\begin{cases}\sqrt{4x-2y}-2\sqrt{x-2y}=-1\\\sqrt{x-2y}+7\left(2x-y\right)=37\end{cases}}\)
Giải hệ phương trình :
\(\hept{\begin{cases}2x^2\left(4x+1\right)+2y^2\left(2y+1\right)=y+32\\x^2+y^2-x+y=\frac{1}{2}\end{cases}}\)
Giải phương trình :
\(\frac{\sqrt{x^2-x+2}}{1+\sqrt{-x^2+x+2}}-\frac{\sqrt{x^2+x}}{1+\sqrt{-x^2-x+4}}=x^2-1\)
Giải hệ phương trình \(\hept{\begin{cases}\frac{3+2x-y}{2x-y}-\frac{6}{x+y}=0\\\frac{1-4x+2y}{2x-y}-\frac{1+2x+2y}{x+y}=0\end{cases}}\)
Hint: đặt \(\frac{1}{2x-y}=a;\frac{1}{x+y}=b\)
Giải hệ phương trình: \(\hept{\begin{cases}\frac{2x^2}{x^2+1}=y\\\frac{2y^2}{y^2+1}=z\\\frac{2z^2}{z^2+1}=x\end{cases}}\)
Đễ thấy \(x=y=z=0\) là 1 nghiệm của hệ
Xét \(\hept{\begin{cases}x\ne0\\y\ne0\\z\ne0\end{cases}}\)
Cộng 3 phương trình vế theo vế ta được
\(\frac{2x^2}{x^2+1}+\frac{2y^2}{y^2+1}+\frac{2z^2}{z^2+1}=x+y+z\)
Ta có: \(\frac{2x^2}{x^2+1}\le\frac{2x^2}{2x}=x\)
Tương tự: \(\hept{\begin{cases}\frac{2y^2}{y^2+1}\le y\\\frac{2z^2}{z^2+1}\le z\end{cases}}\)
Cộng vế theo vế ta được:
\(\frac{2x^2}{x^2+1}+\frac{2y^2}{y^2+1}+\frac{2z^2}{z^2+1}\le x+y+z\)
Dấu = xảy ra khi \(x=y=z=1\)
Vậy nghiệm của hệ là: \(\left(x,y,z\right)=\left(0,0,0;1,1,1\right)\)
PS: Tính không làm đâu nhưng mà đồng hương nên giúp nhau vậy :D
nhìn hpt bự con thế này chắc xài BĐT giải r`, chờ mình tẹo :)