Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
khuc viet anh
Xem chi tiết
Phạm Thị Ngọc Lan
29 tháng 1 2017 lúc 13:51

Tức là tìm 3 số này ak ?

son tran truong
Xem chi tiết
Khách vãng lai
Xem chi tiết

Ta có: \(\frac{2a+b+c}{a}=\frac{a+2b+c}{b}=\frac{a+b+2c}{c}\)

\(\Rightarrow\frac{2a+b+c}{a}-1=\frac{a+2b+c}{b}-1=\frac{a+b+2c}{c}-1\)

\(\Rightarrow\frac{a+b+c}{a}=\frac{a+b+c}{b}=\frac{a+b+c}{c}\)

Mà \(a,b,c\ne0\)

=> a = b= c

\(A=\frac{a+b}{c}+\frac{b+c}{a}+\frac{c+a}{b}\)

      \(=\frac{c+c}{c}+\frac{a+a}{a}+\frac{b+b}{b}\)

        \(=\frac{2c}{c}+\frac{2a}{a}+\frac{2b}{b}\)

          \(=2+2+2=6\)

Khách vãng lai đã xóa
Lê Nguyễn Hoàng Mỹ Đình
Xem chi tiết
oOo RoNaLdO oOo
22 tháng 3 2016 lúc 20:26

Hi SVĐ Mỹ Đình

Oo Bản tình ca ác quỷ oO
22 tháng 3 2016 lúc 20:29

<=> abcabc = abcx(1000+1) = abc x 1001

ta có: ax bcd x abc = abcabc

<=> a x bcd x abc = abc x 1001

<=> a x bcd = 1001

đây là tích giữa số có 1 chữ số và số có 3 chữ số nên ta tìm được a = 7 ( vì 1-> 9 chỉ có 1001 mới chia hết cho 7) => bcd = 143

vậy a = 7 ; b = 1 ; c = 4 ; d = 3

vậy abcd = 7143

Tao Không Tên
22 tháng 3 2016 lúc 20:37

a x bcd x abc = abcabc

Ta có: abc x 1001 = abcabc, mà abc x a x bcd = abcabc 

=> a x bcd = 1001 => a thuộc Ư(1001) = {1;7;11;...}

a là số 1 chữ số nên a là 1 hoặc 7

TH1: a = 1 => bcd = 1001 (loại)

Th2: a = 7 => bcd = 143 (đúng)

Vậy abcd = 7143

dathuy123
Xem chi tiết
Trần Tuấn Anh
Xem chi tiết
Edogawa Conan
27 tháng 7 2019 lúc 16:04

Giải: Áp dụng t/c của dãy tỉ số bằng nhau, ta có:

\(\frac{a+b-c}{c}=\frac{b+c-a}{a}=\frac{c+a-b}{b}=\frac{\left(a+b-c\right)+\left(b+c-a\right)+\left(c+a-b\right)}{c+a+b}=\frac{a+b+c}{a+b+c}=1\) (vì a,b,c \(\ne\)0)

=> \(\hept{\begin{cases}\frac{a+b-c}{c}=1\\\frac{b+c-a}{a}=1\\\frac{c+a-b}{b}=1\end{cases}}\) => \(\hept{\begin{cases}a+b-c=c\\b+c-a=a\\c+a-b=b\end{cases}}\)=> \(\hept{\begin{cases}a+b=2c\\b+c=2a\\c+a=2b\end{cases}}\)

Khi đó, ta có: B = \(\left(1+\frac{b}{a}\right)\left(1+\frac{a}{c}\right)\left(1+\frac{c}{b}\right)\)

B = \(\left(\frac{a+b}{a}\right)\left(\frac{a+c}{c}\right)\left(\frac{b+c}{b}\right)\)

B = \(\frac{2c}{a}.\frac{2b}{c}.\frac{2a}{b}=8\)

Vậy ...

(xem lại đề)

Trần Tuấn Anh
27 tháng 7 2019 lúc 16:10

Cho a,b,c là 3 số thực khác 0, thỏa mãn điều kiện:

a+b-c / c = b+c-a /a = c+a-b / b

Hãy tính B = ( 1+b/a).(1+a/c).(1+c/b)

Hoàng Nhật
Xem chi tiết
Hoàng Nhật
24 tháng 12 2021 lúc 14:31

Ta có: \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{a+b+c}\)

\(\Leftrightarrow\frac{ab+bc+ca}{abc}=\frac{1}{a+b+c}\)

\(\Leftrightarrow\left(ab+bc+ca\right)\left(a+b+c\right)=abc\)

\(\Leftrightarrow a^2b+ab^2+c^2a+ca^2+b^2c+bc^2+2abc=0\)

\(\Leftrightarrow\left(a^2+2ab+b^2\right)c+ab\left(a+b\right)+c^2\left(a+b\right)=0\)

\(\Leftrightarrow\left(a+b\right)\left(ab+bc+ca+c^2\right)=0\)

\(\Leftrightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)=0\)

=> Hoặc a+b=0 hoặc b+c=0 hoặc c+a=0

=> Hoặc a=-b hoặc b=-c hoặc c=-a

Ko mất tổng quát, g/s a=-b

a) Ta có: vì a=-b thay vào ta được:

\(\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}=-\frac{1}{b^3}+\frac{1}{b^3}+\frac{1}{c^3}=\frac{1}{c^3}\)

\(\frac{1}{a^3+b^3+c^3}=\frac{1}{-b^3+b^3+c^3}=\frac{1}{c^3}\)

=> đpcm

b) Ta có: \(a+b+c=1\Leftrightarrow-b+b+c=1\Rightarrow c=1\)

=> \(P=-\frac{1}{b^{2021}}+\frac{1}{b^{2021}}+\frac{1}{c^{2021}}=\frac{1}{1^{2021}}=1\)

Bùi Ngọc Tố Uyên
Xem chi tiết
ILoveMath
4 tháng 12 2021 lúc 21:55

Áp dụng t/c dtsbn ta có:

\(\dfrac{a+b-c}{c}=\dfrac{b+c-a}{a}=\dfrac{c+a-b}{b}=\dfrac{a+b-c+b+c-a+c+a-b}{c+a+b}=\dfrac{a+b+c}{a+b+c}=1\)

\(\dfrac{a+b-c}{c}=1\Rightarrow a+b-c=c\Rightarrow a+b=2c\\ \dfrac{b+c-a}{a}=1\Rightarrow b+c-a=a\Rightarrow b+c=2a\\ \dfrac{c+a-b}{b}=1\Rightarrow c+a-b=b\Rightarrow c+a=2b\)

\(\left(1+\dfrac{b}{a}\right)\left(1+\dfrac{a}{c}\right)\left(1+\dfrac{c}{b}\right)\\ =\dfrac{\left(a+b\right)\left(a+c\right)\left(b+c\right)}{abc}\\ =\dfrac{2c.2b.2a}{abc}\\ =\dfrac{8abc}{abc}\\ =8\)

Đinh Mai Ly
Xem chi tiết