rút gọn biểu thức sau
\(\frac{y^3-x^3}{x^4-y^4}\)
Bài 1
a, Rút gọn biểu thức sau: P= ( x-4)(x+4)-(x-4)^2
b, Tính : 3(x-y)^2 - 2(x+y)^2 - (x-y)(x+y) tại x= 2 và y = -3
\(a,P=x^2-16-x^2+8x-16=8x-32\\ b,=3x^2-6xy+3y^2-2x^2-4xy-2y^2-x^2+y^2\\ =2y^2-10xy=2\cdot9-10\left(-3\right)\cdot2=78\)
Rút gọn các biểu thức sau:
a) \(A = \frac{{{x^5}{y^{ - 2}}}}{{{x^3}y}}\,\,\,\left( {x,y \ne 0} \right);\) b) \(B = \frac{{{x^2}{y^{ - 3}}}}{{{{\left( {{x^{ - 1}}{y^4}} \right)}^{ - 3}}}}\,\,\,\left( {x,y \ne 0} \right).\)
a: \(A=\dfrac{x^5}{x^3}\cdot\dfrac{y^{-2}}{y}=x^2\cdot y^{-1}=\dfrac{x^2}{y}\)
b: \(B=\dfrac{x^2\cdot y^{-3}}{x^3\cdot y^{-12}}=\dfrac{x^2}{x^3}\cdot\dfrac{y^{-3}}{y^{-12}}=\dfrac{1}{x}\cdot y^{-3+12}=\dfrac{y^9}{x}\)
a) \(A=\dfrac{x^5y^{-2}}{x^3y}=\dfrac{x^5}{x^3}.\dfrac{1}{y^{2-1}}=x^{5-3}y^{-1}=x^2y^{-1}\).
b) \(B=\dfrac{x^2y^{-3}}{\left(x^{-1}y^4\right)^{-3}}=\dfrac{x^2y^{-3}}{x^3y^{-12}}=x^{2-3}y^{-3-\left(-12\right)}=\dfrac{1}{xy^9}\)
Đề bài
Cho x; y là các số thực dương. Rút gọn mỗi biểu thức sau:
\(A = \frac{{{x^{\frac{5}{4}}}y + x.{y^{\frac{5}{4}}}}}{{\sqrt[4]{x} + \sqrt[4]{y}}}\)
\(B = {\left( {\sqrt[7]{{\frac{x}{y}\sqrt[5]{{\frac{y}{x}}}}}} \right)^{\frac{{35}}{4}}}\)
\(A=\dfrac{x^{\dfrac{5}{4}}y+xy^{\dfrac{5}{4}}}{\sqrt[4]{x}+\sqrt[4]{y}}\\ =\dfrac{xy\left(x^{\dfrac{1}{4}}+y^{\dfrac{1}{4}}\right)}{x^{\dfrac{1}{4}}+y^{\dfrac{1}{4}}}\\ =xy\)
\(B=\left(\sqrt[7]{\dfrac{x}{y}\sqrt[5]{\dfrac{y}{x}}}\right)^{\dfrac{35}{4}}\\= \left(\sqrt[7]{\dfrac{x}{y}\cdot\left(\dfrac{x}{y}\right)^{-\dfrac{1}{5}}}\right)^{\dfrac{35}{4}}\\ =\left(\sqrt[7]{\left(\dfrac{x}{y}\right)^{\dfrac{4}{5}}}\right)^{\dfrac{35}{4}}\\ =\left[\left(\dfrac{x}{y}\right)^{\dfrac{4}{35}}\right]^{\dfrac{35}{4}}\\ =\left(\dfrac{x}{y}\right)^{\dfrac{4}{35}\cdot\dfrac{35}{4}}\\ =\left(\dfrac{x}{y}\right)^1\\ =\dfrac{x}{y}\)
Rút gọn biểu thức sau :
12 + 3.y + 4.x + x.y - 12 + 2.y + 6.x - x - 5.y
\(12+3y+4x+xy-12+2y+6x-x-5y\)
\(=9x+xy\)
\(=x\left(y+9\right)\)
12+3y+4x+xy-12+2y+6x-x-5y=
=9x+xy
=x(9+y)
12 + 3y + 4x + xy -12 + 2y + 6x- x - 5y
=9x +xy
=x(y+9)
Rút gọn biểu thức:
\(\frac{x^3}{y^2}\): \(\sqrt{\frac{x^2}{y^4}}\)(x và y khác 0)
=\(\frac{x^3}{y^2}\cdot\frac{\sqrt{y^4^{ }}}{\sqrt{x^2}}=\frac{x^3}{y^2}\cdot\frac{y^2}{x}=x^2\)
\(=\frac{x^3}{y^2}:\left|\frac{x}{y^2}\right|=\frac{x^3}{y^2}:\frac{\left|x\right|}{y^2}=\frac{x^3}{\left|x\right|}=\hept{\begin{cases}\frac{x^3}{x}=x^2\text{nếu }x>0\\\frac{x^3}{-x}=-x^2\text{ nếu }x< 0\end{cases}}\)
Cho biểu thức:
\(A=\left[\sqrt{x}+\frac{y-\sqrt{xy}}{\sqrt{x}+\sqrt{y}}\right]:\left[\frac{x}{\sqrt{xy}+y}+\frac{y}{\sqrt{xy}-y}-\frac{x+y}{\sqrt{xy}}\right]\)
a)Rút gọn biểu thức A
b)Tính giá trị của biểu thức A biết \(x=3;y=4+2\sqrt{3}\)
Rút gọn biểu thức
-3.(x - 4) + 2.(-y).(4 - x) + 7.(x - 4) - 5.(-y).(4 - x)
Rút gọn biểu thức: \(A = \frac{{{x^{\frac{3}{2}}}y + x{y^{\frac{3}{2}}}}}{{\sqrt x + \sqrt y }}\,\,\,\left( {x,y > 0} \right).\)
\(=\dfrac{xy\left(x^{\dfrac{1}{2}}+y^{\dfrac{1}{2}}\right)}{x^{\dfrac{1}{2}}+y^{\dfrac{1}{2}}}=xy\)
\(A=\dfrac{x^{\dfrac{3}{2}}y+xy^{\dfrac{3}{2}}}{\sqrt{x}+\sqrt{y}}=\left(x+y\right).\dfrac{\sqrt{x}-\sqrt{y}}{\sqrt{x}+\sqrt{y}}\).
bài 3 : rút gọn biểu thức
(x-y) (x+y) (x^2 +y^2) (x^4+y^4)
\(\left(x-y\right)\left(x+y\right)\left(x^2+y^2\right)\left(x^4+y^4\right)\)
\(=\left(x^2-y^2\right)\left(x^2+y^2\right)\left(x^4+y^4\right)\)
\(=\left(x^4-y^4\right)\left(x^4+y^4\right)\)
\(=x^8-y^8\)