Cho phương trình x2 - 2(m + 2)x + m - 3 =0. Tìm m để phương trình có ít nhất một nghiệm x ≤ 0
Cho phương trình : x2+2(m-1)x-(m+1)=0 a, tìm m để phương trình có ít nhất một nghiệm lớn hơn 3
\(\Delta'=\left(m-1\right)^2+\left(m+1\right)=m^2-m+2=\left(m-\dfrac{1}{2}\right)^2+\dfrac{7}{4}>0\)
Phương trình luôn có 2 nghiệm phân biệt với mọi m
Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=-2\left(m-1\right)\\x_1x_2=-\left(m+1\right)\end{matrix}\right.\)
Phương trình có cả 2 nghiệm không lớn hơn 3 khi: \(x_1< x_2\le3\)
\(\Rightarrow\left\{{}\begin{matrix}\left(x_1-3\right)\left(x_2-3\right)\ge0\\\dfrac{x_1+x_2}{2}< 3\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x_1x_2-3\left(x_1+x_2\right)+9\ge0\\x_1+x_2< 6\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}-\left(m+1\right)+6\left(m-1\right)+9\ge0\\-2\left(m-1\right)< 6\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}m\ge-\dfrac{2}{5}\\m>-2\end{matrix}\right.\) \(\Rightarrow m\ge-\dfrac{2}{5}\)
Vậy phương trình có ít nhất 1 nghiệm lớn hơn 3 khi: \(m< -\dfrac{2}{5}\)
1. Tìm các giá trị của m để phương trình 3x2 - 4a + 2(m-1) = 0 có hai nghiệm phân biệt nhỏ hơn 2
2. Tìm các giá trị của m để phương trình x2 +mx -1 - 0 có ít nhất một nghiệm lớn hơn hoặc bằng 2
3. Cho phương trình mx2 - (2m-1)x +m+2 = 0 (5). Tìm hệ thức liên hệ giữa các nghiệm x1, x2 của (5) không phụ thuộc vào m
2.giải phương trình trên , ta được :
\(x_1=\frac{-m+\sqrt{m^2+4}}{2};x_2=\frac{-m-\sqrt{m^2+4}}{2}\)
Ta thấy x1 > x2 nên cần tìm m để x1 \(\ge\)2
Ta có : \(\frac{-m+\sqrt{m^2+4}}{2}\ge2\) \(\Leftrightarrow\sqrt{m^2+4}\ge m+4\)( 1 )
Nếu \(m\le-4\)thì ( 1 ) có VT > 0, VP < 0 nên ( 1 ) đúng
Nếu m > -4 thì ( 1 ) \(\Leftrightarrow m^2+4\ge m^2+8m+16\Leftrightarrow m\le\frac{-3}{2}\)
Ta được : \(-4< m\le\frac{-3}{2}\)
Tóm lại, giá trị phải tìm của m là \(m\le\frac{-3}{2}\)
Bài 1 cho pt x^2-2(m+1)x+4m+m^2=0 .Tìm m để phương trình có 2 nghiệm phân biệt x1,x2 sao cho biểu thức A =|x1-x2| đạt giá trị nhỏ nhất
bài 2 cho pt x^2+mx+2m-4=0.Tìm m để phương trình có 2 nghiệm phân biệt x1,x2 thỏa mãn |x1|+|x2|=3
bài 3 cho pt x^2-3x-m^2+1=0.tìm m để phương trình có 2 nghiệm phân biệt x1,x2 thỏa mãn |x1|+2|x2|=3
Tìm m để hai phương trình x 2 + m x + 1 = 0 v à x 2 + x + m = 0 có ít nhất một nghiệm chung
A. 1
B. 2
C. −1
D. −2
Gọi x0 là nghiệm chung của hai phương trình
thì x0 phải thỏa mãn hai phương trình trên:
Thay x = x0 vào hai phương trình trên ta được
x 0 2 + m x 0 + 1 = 0 x 0 2 + x 0 + m = 0
⇒ (m – 1)x0 + 1 – m = 0
⇔ (m – 1)(x0 – 1) = 0 (*)
Xét phương trình (*)
Nếu m = 1 thì 0 = 0 (luôn đúng)
hay hai phương trình trùng nhau
Lúc này phương trình x2 + x + 1 = 0
vô nghiệm nên cả hai phương trình đều vô nghiệm.
Vậy m = 1 không thỏa mãn.
+) Nếu m ≠ 1 thì x0 = 1
Thay x0 = 1 vào phương trình x02 + mx0 + 1 = 0 ta được m = −2
Thay m = −2 thì hai phương trình có nghiệm chung
Đáp án cần chọn là: D
a)Cho phương trình : (m+2)x^2 - (2m-1)x-3+m=0 tìm điều kiện của m để phương trình có hai nghiệm phân biệt x1, x2 sao cho nghiệm này gấp đôi nghiệm kia
b)Cho phương trình bậc hai: x^2-mx+m-1=0. Tìm m để phương trình có hai nghiệm x1;x2 sao cho biểu thức R=2x1x2+3/x1^2+x2^2+2(1+x1x2) đạt giá trị lớn nhất. Tìm giá trị lớn nhất đó
c)Định m để hiệu hai nghiệm của phương trình sau đây bằng 2
mx^2-(m+3)x+2m+1=0
Mọi người giúp em giải chi tiết ra với ạ. Em cảm ơn!
Cho phương trình x² +(m+3)x-2m+2=0 a. Tìm m để phương trình có hai nghiệm trái dấu. b. Tìm m để phương trình có hai nghiệm dương phân biệt. c. Tìm m để phương trình có hai nghiệm âm phân biệt. d. Tìm m để phương trình có ít một nghiệm dương.
Sửa đề: \(x^2+\left(m+3\right)x+2m+2=0\)
a: Để phương trình có hai nghiệm trái dấu thì 2m+2<0
hay m<-1
b: \(\text{Δ}=\left(m+3\right)^2-4\left(2m+2\right)\)
\(=m^2+6m+9-8m-8\)
\(=m^2-2m+1=\left(m-1\right)^2>=0\)
Do đó: Phương trình luôn có hai nghiệm với mọi m
Để phương trình có hai nghiệm dương phân biệt thì \(\left\{{}\begin{matrix}m-1< >0\\2m+2>0\\m+3>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m>-1\\m< >1\end{matrix}\right.\)
cho phương trình x2 -(m+1)x +m+2=0
a) tìm m để phương trình vô nghiệm ? có nghiệm kép? có nghiệm? có 2 nghiệm phân biệt?
b) tìm m để phương trình có 2 nghiệm trái dấu
c) tìm m để phương trình có 2 nghiệm dương phân biệt
d) tìm m để phương trình có ít nhất một nghiệm dương
a Tìm m để phương trình vô nghiệm: x2 - (2m - 3)x + m2 = 0.
b Tìm m để phương trình vô nghiệm: (m - 1)x2 - 2mx + m -2 = 0.
c Tìm m để phương trình vô nghiệm: (2 - m)x2 - 2(m + 1)x + 4 - m = 0
\(a,x^2-\left(2m-3\right)x+m^2=0-vô-ngo\)
\(\Leftrightarrow\Delta< 0\Leftrightarrow[-\left(2m-3\right)]^2-4m^2< 0\Leftrightarrow m>\dfrac{3}{4}\)
\(b,\left(m-1\right)x^2-2mx+m-2=0\)
\(m-1=0\Leftrightarrow m=1\Rightarrow-2x-1=0\Leftrightarrow x=-0,5\left(ktm\right)\)
\(m-1\ne0\Leftrightarrow m\ne1\Rightarrow\Delta'< 0\Leftrightarrow\left(-m\right)^2-\left(m-2\right)\left(m-1\right)< 0\Leftrightarrow m< \dfrac{2}{3}\)
\(c,\left(2-m\right)x^2-2\left(m+1\right)x+4-m=0\)
\(2-m=0\Leftrightarrow m=2\Rightarrow-6x+2=0\Leftrightarrow x=\dfrac{1}{3}\left(ktm\right)\)
\(2-m\ne0\Leftrightarrow m\ne2\Rightarrow\Delta'< 0\Leftrightarrow[-\left(m+1\right)]^2-\left(4-m\right)\left(2-m\right)< 0\Leftrightarrow m< \dfrac{7}{8}\)
Tìm m để hai phương trình x 2 + m x + 2 = 0 v à x 2 + 2 x + m = 0 có ít nhất một nghiệm chung.
A. 1
B. −3
C. −1
D. 3
Gọi x0 là nghiệm chung của hai phương trình
thì x0 phải thỏa mãn hai phương trình trên.
Thay x = x0 vào hai phương trình trên ta được
x 0 2 + m x 0 + 2 = 0 x 0 2 + 2 x 0 + m = 0
⇒ (m – 2)x0 + 2 – m = 0 ⇔ (m – 2)(x0 – 1) = 0
Nếu m = 2 thì 0 = 0 (luôn đúng) hay hai phương trình trùng nhau.
Lúc này phương trình x2 + 2x + 2 = 0 ⇔ (x + 1)2 = −1
vô nghiệm nên cả hai phương trình đều vô nghiệm
Vậy m = 2 không thỏa mãn.
Nếu m ≠ 2 thì x0 = 1
Thay x0 = 1 vào phương trình x02 + mx0 + 2 = 0
ta được 1 + m + 2 = 0 ⇔ m = −3
Vậy m = −3 thì hai phương trình có nghiệm chung
Đáp án cần chọn là: B
Cho phương trình \(mx^2+\left(m-1\right)x+m-1=0\)
a) Tìm m để phương trình vô nghiệm.
b) Tìm m để phương trình có hai nghiệm trái dấu.
c) Tìm m để phương trình có hai nghiệm x1; x2 sao cho \(x_1^2+x_2^2-3>0\)
a. Với \(m=0\Rightarrow-x-1=0\Rightarrow x=-1\) pt có nghiệm (ktm)
Với \(m\ne0\) pt vô nghiệm khi:
\(\Delta=\left(m-1\right)^2-4m\left(m-1\right)< 0\)
\(\Leftrightarrow\left(m-1\right)\left(-3m-1\right)< 0\)
\(\Rightarrow\left[{}\begin{matrix}m>1\\m< -\dfrac{1}{3}\end{matrix}\right.\)
b. Phương trình có 2 nghiệm trái dấu khi \(ac< 0\)
\(\Leftrightarrow m\left(m-1\right)< 0\Rightarrow0< m< 1\)
c. Từ câu a ta suy ra pt có 2 nghiệm khi \(\left\{{}\begin{matrix}m\ne0\\-\dfrac{1}{3}\le m\le1\end{matrix}\right.\)
Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=\dfrac{1-m}{m}\\x_1x_2=\dfrac{m-1}{m}\end{matrix}\right.\)
\(x_1^2+x_2^2-3>0\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2-3>0\)
\(\Leftrightarrow\left(\dfrac{1-m}{m}\right)^2-2\left(\dfrac{m-1}{m}\right)-3>0\)
Đặt \(\dfrac{m-1}{m}=t\Rightarrow t^2-2t-3>0\Rightarrow\left[{}\begin{matrix}t>3\\t< -1\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}\dfrac{m-1}{m}>3\\\dfrac{m-1}{m}< -1\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}\dfrac{-2m-1}{m}>0\\\dfrac{2m-1}{m}< 0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}-\dfrac{1}{2}< m< 0\\0< m< \dfrac{1}{2}\end{matrix}\right.\)
Kết hợp điều kiện có nghiệm \(\Rightarrow\left[{}\begin{matrix}-\dfrac{1}{3}\le m< 0\\0< m< \dfrac{1}{2}\end{matrix}\right.\)