Những câu hỏi liên quan
Tùng
Xem chi tiết
Nguyễn Việt Lâm
24 tháng 11 2019 lúc 15:33

\(P=\frac{2a}{2\sqrt{\left(b+1\right)\left(b^2-b+1\right)}+2}+\frac{2b}{2\sqrt{\left(c+1\right)\left(c^2-c+1\right)}+2}+\frac{2c}{2\sqrt{\left(a+1\right)\left(a^2-a+1\right)}+2}\)

\(P\ge\frac{2a}{b^2+4}+\frac{2b}{c^2+4}+\frac{2c}{a^2+4}\)

\(2P\ge\frac{4a}{b^2+4}+\frac{4b}{c^2+4}+\frac{4c}{a^2+4}=a-\frac{ab^2}{b^2+4}+b-\frac{bc^2}{c^2+4}+a-\frac{ca^2}{a^2+4}\)

\(2P\ge a+b+c-\left(\frac{ab^2}{4b}+\frac{bc^2}{4c}+\frac{ca^2}{4a}\right)\)

\(2P\ge6-\frac{1}{4}\left(ab+bc+ca\right)\ge6-\frac{1}{12}\left(a+b+c\right)^2=3\)

\(\Rightarrow P\ge\frac{3}{2}\)

\("="\Leftrightarrow a=b=c=2\)

Khách vãng lai đã xóa
Lê Trường Lân
Xem chi tiết
Tran Le Khanh Linh
16 tháng 5 2020 lúc 21:06

Bài 1: diendantoanhoc.net

Đặt \(a=\frac{1}{x};b=\frac{1}{y};c=\frac{1}{z}\) BĐT cần chứng minh trở thành

\(\frac{x}{\sqrt{3zx+2yz}}+\frac{x}{\sqrt{3xy+2xz}}+\frac{x}{\sqrt{3yz+2xy}}\ge\frac{3}{\sqrt{5}}\)

\(\Leftrightarrow\frac{x}{\sqrt{5z}\cdot\sqrt{3x+2y}}+\frac{y}{\sqrt{5x}\cdot\sqrt{3y+2z}}+\frac{z}{\sqrt{5y}\cdot\sqrt{3z+2x}}\ge\frac{3}{5}\)

Theo BĐT AM-GM và Cauchy-Schwarz ta có:

\( {\displaystyle \displaystyle \sum }\)\(_{cyc}\frac{x}{\sqrt{5z}\cdot\sqrt{3x+2y}}\ge2\)\( {\displaystyle \displaystyle \sum }\)\(\frac{x}{3x+2y+5z}\ge\frac{2\left(x+y+z\right)^2}{x\left(3x+2y+5z\right)+y\left(5x+3y+2z\right)+z\left(2x+5y+3z\right)}\)

\(=\frac{2\left(x+y+z\right)^2}{3\left(x^2+y^2+z^2\right)+7\left(xy+yz+zx\right)}\)

\(=\frac{2\left(x+y+z\right)^2}{3\left(x^2+y^2+z^2\right)+\frac{1}{3}\left(xy+yz+zx\right)+\frac{20}{3}\left(xy+yz+zx\right)}\)

\(\ge\frac{2\left(x+y+z\right)^2}{3\left(x^2+y^2+z^2\right)+\frac{1}{3}\left(x^2+y^2+z^2\right)+\frac{20}{3}\left(xy+yz+zx\right)}\)

\(=\frac{2\left(x^2+y^2+z^2\right)}{5\left[x^2+y^2+z^2+2\left(xy+yz+zx\right)\right]}=\frac{3}{5}\)

Khách vãng lai đã xóa
Tran Le Khanh Linh
16 tháng 5 2020 lúc 21:07

Bổ sung bài 1:

BĐT được chứng minh

Đẳng thức xảy ra <=> a=b=c

Khách vãng lai đã xóa
Nguyễn Minh Huy
Xem chi tiết
Đinh thị thu ngọc
30 tháng 7 2018 lúc 10:11

\(\frac{1}{a^2}+\frac{1}{b^2}=\frac{a}{a^3}+\frac{1}{b^2}\ge\frac{\left(\sqrt{a}+1\right)^2}{a^3+b^2}\ge\frac{4\sqrt{a}}{a^3+b^2}\)

Cứ tiếp tục như vậy ta sẽ có đpcm. dấu = xảy ra khi a=b=c=1

NGUYỄN MINH HUY
Xem chi tiết
Nguyễn Xuân Tiến 24
31 tháng 8 2018 lúc 21:36

Ta có: Theo bất đẳng thức cauchy schwarz và bất đẳng thức cauchy với a;b;c>0 ta có:

\(\dfrac{1}{a^2}+\dfrac{1}{a^2}=\dfrac{\left(\sqrt{a}\right)^2}{a^3}+\dfrac{1}{a^2}\ge\dfrac{\left(\sqrt{a}+1\right)^2}{a^3+a^2}\ge\dfrac{4\sqrt{a}}{a^3+a^2}\)(1)

Tương tự \(\dfrac{1}{b^2}+\dfrac{1}{b^2}\ge\dfrac{4\sqrt{b}}{b^3+b^2}\left(2\right);\dfrac{1}{c^2}+\dfrac{1}{c^2}\ge\dfrac{4\sqrt{c}}{c^3+c^2}\left(3\right)\)

Cộng từng vế (1) ;(2);(3) vế theo vế rồi chia hai vế cho 2 ta có đpcm

Ma Sói
1 tháng 9 2018 lúc 14:53

Căn bậc hai. Căn bậc ba

DƯƠNG PHAN KHÁNH DƯƠNG
1 tháng 9 2018 lúc 15:01

Áp dụng BĐT Cauchy schwarz kết hợp với AM-GM cho các số dương ta có :

\(\dfrac{1}{a^2}+\dfrac{1}{b^2}=\dfrac{a}{a^3}+\dfrac{1}{b^2}\ge\dfrac{\left(\sqrt{a}+1\right)^2}{a^3+b^2}\ge\dfrac{4\sqrt{a}}{a^3+b^2}\)

\(\dfrac{1}{b^2}+\dfrac{1}{c^2}=\dfrac{b}{b^3}+\dfrac{1}{c^2}\ge\dfrac{\left(\sqrt{b}+1\right)^2}{b^3+c^2}\ge\dfrac{4\sqrt{b}}{b^3+c^2}\)

\(\dfrac{1}{c^2}+\dfrac{1}{a^2}=\dfrac{c}{c^3}+\dfrac{1}{a^2}\ge\dfrac{\left(\sqrt{c}+1\right)^2}{c^3+a^2}\ge\dfrac{4\sqrt{c}}{c^3+a^2}\)

Cộng từng vế của BĐT ta được :

\(2\left(\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}\right)\ge\dfrac{4\sqrt{a}}{a^3+b^2}+\dfrac{4\sqrt{b}}{b^3+c^2}+\dfrac{4\sqrt{c}}{c^3+a^2}\)

\(\Leftrightarrow\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}\ge\dfrac{2\sqrt{a}}{a^3+b^2}+\dfrac{2\sqrt{b}}{b^3+c^2}+\dfrac{2\sqrt{c}}{c^3+a^2}\) ( đpcm )

Dấu \("="\) xảy ra khi \(a=b=c\)

NGUYỄN MINH HUY
Xem chi tiết
Mysterious Person
9 tháng 9 2018 lúc 19:58

ta có : \(\dfrac{1}{a^2}+\dfrac{1}{b^2}=\dfrac{a}{a^3}+\dfrac{1}{b^2}\ge\dfrac{\left(\sqrt{a}+1\right)^2}{a^3+b^2}=\dfrac{a^2+2\sqrt{a}+1}{a^3+b^2}\ge\dfrac{4\sqrt{a}}{a^3+b^2}\)

làm tương tự ta có : \(\dfrac{1}{b^2}+\dfrac{1}{c^2}\ge\dfrac{4\sqrt{b}}{b^3+c^2}\)\(\dfrac{1}{c^2}+\dfrac{1}{a^2}\ge\dfrac{4\sqrt{c}}{c^3+a^2}\)

cộng quế theo quế \(\Rightarrow\) (đpcm)

NGUYỄN MINH HUY
Xem chi tiết
Đinh Thị Ngọc Anh
Xem chi tiết
Nguyễn Minh Huy
Xem chi tiết
Nguyễn Minh Huy
Xem chi tiết
Pham Quoc Cuong
9 tháng 9 2018 lúc 20:42

Ta có: \(\frac{1}{a^2}+\frac{1}{b^2}=\frac{a}{a^3}+\frac{1}{b^2}\ge\frac{\left(\sqrt{a}+1\right)^2}{a^3+b^2}=\frac{a+2\sqrt{a}+1}{a^3+b^2}\ge\frac{4\sqrt{a}}{a^3+b^2}\) 

Tương tự: \(\frac{1}{b^2}+\frac{1}{c^2}\ge\frac{4\sqrt{b}}{b^3+c^2}\) 

                \(\frac{1}{c^2}+\frac{1}{a^2}\ge\frac{4\sqrt{c}}{a^3+a^2}\)  

Cộng từng vế: \(2\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)\ge2\left(\frac{2\sqrt{a}}{a^3+b^2}+\frac{2\sqrt{b}}{b^3+c^2}+\frac{2\sqrt{c}}{c^3+a^2}\right)\)

\(\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)\ge\left(\frac{2\sqrt{a}}{a^3+b^2}+\frac{2\sqrt{b}}{b^3+c^2}+\frac{2\sqrt{c}}{c^3+a^2}\right)\)(đpcm)