Cho
A= 1 +2 +2^2 + ...+ 2 ^ 28 + 2 ^29
. Chứng minh A chia hết cho 7
Chứng minh rằng: A = 2 + 22 + 23 + .....+ 228 + 229 + 230 chia hết cho 7
cho S = 2 mũ 1 + 2 mũ 2 + 2 mũ 3 + 2 mũ 4 + 2 mũ 5 + 2 mũ 6 +... + 2 mũ 28 + 2 mũ 29 + 2 mũ 30 . Chứng minh rằng S chia hết cho 7
\(S=2^1+2^2+2^3+2^4+2^5+2^6+..+2^{28}+2^{29}+2^{30}\)
\(S=2.\left(1+2+2^2\right)+2^4.\left(1+2+2^2\right)+...+2^{28}.\left(1+2+2^2\right)\)
\(S=\left(1+2+2^2\right).\left(2+2^4+...+2^{28}\right)\)
\(S=7.\left(2+2^4+...+2^{28}\right)\)
⇒ \(S⋮7\) ( điều phải chứng minh )
S=21+22+23+...+230
S=(21+22+23)+(24+25+26)+...+(228+229+230)
S=7.2+7.24+...+7.228
S=7.(2+24+...+228)
⇒S⋮7
Ta có: \(S=2^1+2^2+2^3+...+2^{28}+2^{29}+2^{30}\)
\(=2\left(1+2+2^2\right)+2^4\left(1+2+2^2\right)+...+2^{28}\left(1+2+2^2\right)\)
\(=7\cdot\left(2+2^4+...+2^{28}\right)⋮7\)
A) Cho A= 51+52+53+...+5100 chứng minh A chia hết cho 6 ( Gợi ý:Ghép đôi)
B) Cho B= 2+22+23+...+228+229+230 chứng minh B chia hết cho 7 (Gợi ý:Ghép ba)
\(a,A=5^1+5^2+...+5^{100}\)
\(\Rightarrow A=5\left(1+5\right)+5^3\left(1+5\right)+...+5^{99}\left(1+5\right)\)
\(\Rightarrow6\left(5+5^3+...+5^{99}\right)\)
\(\Rightarrow A⋮6\)
\(b,B=2+2^2+2^3+...+2^{28}+2^{29}+2^{30}\)
\(\Rightarrow B=2\left(1+2+2^2\right)+...+2^{28}\left(1+2+2^2\right)\)
\(\Rightarrow7\left(2+...+2^{28}\right)\)
\(\Rightarrow B⋮7\)
Chứng minh
1 + 2 + 2^2 +2^3 +....+ 2^28 + 2^29 chia hết cho 3
1 + 2 + 23 + 24 +...+ 228 + 229
= 20 + 21 + 23 + 24 +...+ 228 + 229
= (20 + 21) + (23 + 24) +...+ (228 + 229)
= 20(20 + 21) + 23(20 + 21) +...+ 228(20 + 21)
= 20 . 3 + 23 . 3 +...+ 228 . 3
= (20 + 23 + 26 +...+ 228) . 3 chia hết cho 3
1 + 2 + 22 + 23 +...+ 228 + 229
= 20 + 21 + 22 + 23 +...+ 228 + 229
= (20 + 21) + (22 + 23) +...+ (228 + 229)
= 20(20 + 21) + 22(20 + 21) +...+ 228(20 + 21)
= 20 . 3 + 22 . 3 +...+ 228 . 3
= (20 + 22 + 24 +...+ 228) . 3 chia hết cho 3
Hi hi. Mình nhầm tí.
Cho A = 2^30 + 2^29 + 2^28
Chứng tỏ A chia hết cho 7.
Cho A = 2^30 + 2^29 + 2^28
Chứng tỏ A chia hết cho 7.
Cho A=2 + 2^2 +2^3+....+2^30 Chứng minh rằng: A chia hết choa 3 và A chia hết cho 5
A = 2 + 22 + 23 + ...+ 230
A = ( 2 + 22 ) + ( 23 + 24 ) + ....+ ( 229 + 230 )
A = 2(1+2) + 23(1+2) + ....+ 229(1+2)
A = 2.3 + 23 . 3 + ...+ 229.3
A = 3(2+23 + ...+ 229) \(⋮\) 3
Vậy A chia hết cho 3
Cho A=230+229+228
chứng minh rằng A chia hết cho 7
A = 230 + 229 + 228
= 228.4 + 228.2 + 228.1
= 228.(4 + 2 + 1)
= 228.7
Do đó A chia hết cho 7
sử dụng ĐỒNG DƯ THỨC nha bạn!
TICK với nha!!!!!!!!
\(\text{Ta có:}A=2^{30}+2^{29}+2^{28}=2^{28}.\left(2^2+2+1\right)=2^{28}.\left(4+2+1\right)=2^{28}.7\text{ chia hết cho 7}\)
=> \(2^{30}+2^{29}+2^{28}\text{ chia hết cho 7}\left(\text{đpcm}\right).\)
Chứng minh rằng:
a, M = 8^8 + 2^20 chia hết cho 7
b, A = 10^28 + 8 chia hết cho 72
c, T = 2 + 2^2 + 2^3 + … + 2^60 chia hết cho 3, 7, 15