Những câu hỏi liên quan
Nguyễn Danh Hậu
Xem chi tiết
Trần Thanh Phương
17 tháng 8 2019 lúc 11:07

Áp dụng bất đẳng thức Cauchy-Schwarz :

\(VT=\frac{x^2}{y+z}+\frac{y^2}{z+x}+\frac{z^2}{x+y}\ge\frac{\left(x+y+z\right)^2}{2\left(x+y+z\right)}=\frac{6^2}{2\cdot6}=3\)

Dấu "=" xảy ra \(\Leftrightarrow x=y=z=2\)

p/s: Đề sai nha bạn. Dạng tổng quát của bài toán :

Cho \(a,b,c>0;a+b+c=p\). Chứng minh rằng :

\(\frac{a^2}{b+c}+\frac{b^2}{c+a}+\frac{c^2}{a+b}\ge\frac{p}{2}\)

Bình luận (0)
Quách Phú Đạt
Xem chi tiết
Kuro Kazuya
23 tháng 2 2017 lúc 1:32

Xét: \(\frac{1-x^2}{x+yz}+\frac{1-y^2}{y+xz}+\frac{1-z^2}{z+xy}\)

Thay thế \(x+y+z=1\)

\(\Leftrightarrow\frac{\left(x+y+z\right)^2-x^2}{x\left(x+y+z\right)+yz}+\frac{\left(x+y+z\right)^2-y^2}{y\left(x+y+z\right)+xz}+\frac{\left(x+y+z\right)^2-z^2}{z\left(x+y+z\right)+xy}\)

Áp dụng hằng đẳng thức hiệu 2 bình phương: \(a^2-b^2=\left(a-b\right)\left(a+b\right)\)

\(\Leftrightarrow\frac{\left(y+z\right)\left(2x+y+z\right)}{x^2+xy+xz+yz}+\frac{\left(x+z\right)\left(x+2y+z\right)}{xy+y^2+yz+xz}+\frac{\left(x+y\right)\left(x+y+2z\right)}{xz+zy+z^2+xy}\)

\(\Leftrightarrow\frac{\left(y+z\right)\left(2x+y+z\right)}{\left(x+y\right)\left(x+z\right)}+\frac{\left(x+z\right)\left(x+2y+z\right)}{\left(x+y\right)\left(y+z\right)}+\frac{\left(x+y\right)\left(x+y+2z\right)}{\left(x+z\right)\left(y+z\right)}\)

Áp dụng bất đẳng thức Cauchy cho 2 bộ số thực không âm

\(\Rightarrow\left\{\begin{matrix}\left(x+y\right)\left(x+z\right)\le\left(\frac{2x+y+z}{2}\right)^2=\frac{\left(2x+y+z\right)^2}{4}\\\left(x+y\right)\left(y+z\right)\le\left(\frac{x+2y+z}{2}\right)^2=\frac{\left(x+2y+z\right)^2}{4}\\\left(x+z\right)\left(y+z\right)\le\left(\frac{x+y+2z}{2}\right)^2=\frac{\left(x+y+2z\right)^2}{4}\end{matrix}\right.\)

\(\Rightarrow\left\{\begin{matrix}\frac{\left(y+z\right)\left(2x+y+z\right)}{\left(x+y\right)\left(x+z\right)}\ge\frac{4\left(y+z\right)\left(2x+y+z\right)}{\left(2x+y+z\right)^2}=\frac{4\left(y+z\right)}{2x+y+z}\\\frac{\left(x+z\right)\left(x+2y+z\right)}{\left(x+y\right)\left(y+z\right)}\ge\frac{4\left(x+z\right)\left(x+2y+z\right)}{\left(x+2y+z\right)^2}=\frac{4\left(x+z\right)}{x+2y+z}\\\frac{\left(x+y\right)\left(x+y+2z\right)}{\left(x+z\right)\left(y+z\right)}\ge\frac{4\left(x+y\right)\left(x+y+2z\right)}{\left(x+y+2z\right)^2}=\frac{4\left(x+y\right)}{x+y+2z}\end{matrix}\right.\)

\(\Rightarrow VT\ge\frac{4\left(y+z\right)}{2x+y+z}+\frac{4\left(x+z\right)}{x+2y+z}+\frac{4\left(x+y\right)}{x+y+2z}\)

\(\Rightarrow VT\ge4\left(\frac{y+z}{2x+y+z}+\frac{x+z}{x+2y+z}+\frac{x+y}{x+y+2z}\right)\)

Ta có: \(x+y+z=1\)

\(\Rightarrow\left\{\begin{matrix}y+z=1-x\\x+z=1-y\\x+y=1-z\end{matrix}\right.\) ( 1 )

\(\Rightarrow\left\{\begin{matrix}2x+y+z=1+x\\x+2y+z=1+y\\x+y+2z=1+z\end{matrix}\right.\) ( 2 )

Từ ( 1 ) và ( 2 )

\(\Rightarrow VT\ge4\left(\frac{1-x}{1+x}+\frac{1-y}{1+y}+\frac{1-z}{1+z}\right)\)

\(\Rightarrow VT\ge4\left(\frac{1+x-2x}{1+x}+\frac{1+y-2y}{1+y}+\frac{1+z-2z}{1+z}\right)\)

\(\Rightarrow VT\ge4\left[3-\left(\frac{2x}{1+x}+\frac{2y}{1+y}+\frac{2z}{1+z}\right)\right]\)

\(\Rightarrow VT\ge12-4\left(\frac{2x}{1+x}+\frac{2y}{1+y}+\frac{2z}{1+z}\right)\)

Chứng minh rằng \(12-4\left(\frac{2x}{1+x}+\frac{2y}{1+y}+\frac{2z}{1+z}\right)\ge6\)

\(\Leftrightarrow4\left(\frac{2x}{1+x}+\frac{2y}{1+y}+\frac{2z}{1+z}\right)\le6\)

\(\Leftrightarrow\frac{2x}{1+x}+\frac{2y}{1+y}+\frac{2z}{1+z}\le\frac{3}{2}\)

\(\Leftrightarrow\frac{x}{1+x}+\frac{y}{1+y}+\frac{z}{1+z}\le\frac{3}{4}\)

\(\Leftrightarrow\frac{1+x-1}{1+x}+\frac{1+y-1}{1+y}+\frac{1+z-1}{1+z}\le\frac{3}{4}\)

\(\Leftrightarrow1-\frac{1}{1+x}+1-\frac{1}{1+y}+1-\frac{1}{1+z}\le\frac{3}{4}\)

\(\Leftrightarrow3-\left(\frac{1}{1+x}+\frac{1}{1+y}+\frac{1}{1+z}\right)\le\frac{3}{4}\)

Áp dụng bất đẳng thức cộng mẫu số

\(\Rightarrow\frac{1}{1+x}+\frac{1}{1+y}+\frac{1}{1+z}\ge\frac{\left(1+1+1\right)^2}{3+x+y+z}=\frac{9}{4}\)

\(\Rightarrow3-\left(\frac{1}{1+x}+\frac{1}{1+y}+\frac{1}{1+z}\right)\le3-\frac{9}{4}\)

\(\Rightarrow3-\left(\frac{1}{1+x}+\frac{1}{1+y}+\frac{1}{1+z}\right)\le\frac{3}{4}\) ( đpcm )

\(12-4\left(\frac{2x}{1+x}+\frac{2y}{1+y}+\frac{2z}{1+z}\right)\ge6\)

\(\Rightarrow VT\ge6\)

\(\Leftrightarrow\)\(\frac{1-x^2}{x+yz}+\frac{1-y^2}{y+xz}+\frac{1-z^2}{z+xy}\ge6\) ( đpcm )

Bình luận (0)
Akai Haruma
23 tháng 2 2017 lúc 2:20

Cách khác:

\(A=\frac{1-x^2}{x+yz}+\frac{1-y^2}{y+xz}+\frac{1-z^2}{z+xy}=\frac{1-x^2}{x(x+y+z)+yz}+\frac{1-y^2}{y(x+y+z)+xz}+\frac{1-z^2}{z(x+y+z)+xy}\)

\(\Leftrightarrow A=\frac{1-x^2}{(x+y)(x+z)}+\frac{1-y^2}{(y+z)(y+x)}+\frac{1-z^2}{(z+x)(z+y)}=\frac{2(x+y+z)-[xy(x+y)+yz(y+z)+xz(x+z)]}{(x+y)(y+z)(x+z)}\)

\(A\geq 6\Leftrightarrow 2-[xy(x+y)+yz(y+z)+xz(x+z)]\ge 6(x+y)(y+z)(x+z)\)

\(\Leftrightarrow 2+9xyz\geq 7(x+y+z)(xy+yz+xz)\)

\(\Leftrightarrow 2+9xyz\geq 7(xy+yz+xz)\) \((\star)\)

Theo BĐT Schur bậc 3 kết hợp AM-GM:

\(xyz\geq (x+y-z)(y+z-x)(x+z-y)=(1-2x)(1-2y)(1-2z)\)

\(\Leftrightarrow 9xyz\geq 4(xy+yz+xz)-1\)

\(\Rightarrow 2+9(xy+yz+xz)\geq 1+4(xy+yz+xz)=(x+y+z)^2+4(xy+yz+xz)\)\(\geq 7(xy+yz+xz)\)

Do đó \((\star)\) được CM. Bài toán hoàn tất. Dấu bằng xảy ra khi \(x=y=z=\frac{1}{3}\)

Bình luận (0)
Tokuda
Xem chi tiết
kudo shinichi
12 tháng 1 2019 lúc 17:09

\(\frac{x+y}{z}+\frac{y+z}{x}+\frac{z+x}{y}\)

\(=\frac{x}{z}+\frac{y}{z}+\frac{y}{x}+\frac{z}{x}+\frac{z}{y}+\frac{x}{y}\)

\(=\left(\frac{x}{z}+\frac{z}{x}\right)+\left(\frac{y}{z}+\frac{z}{y}\right)+\left(\frac{x}{y}+\frac{y}{x}\right)\)

Áp dụng BĐT AM-GM ta có:

\(\frac{x+y}{z}+\frac{y+z}{x}+\frac{z+x}{y}\ge2.\sqrt{\frac{x}{z}.\frac{z}{x}}+2.\sqrt{\frac{x}{y}.\frac{y}{x}}+2.\sqrt{\frac{y}{z}.\frac{z}{y}}=2+2+2=6\)

                                                                                                                           đpcm

Bình luận (0)
Phùng Minh Quân
12 tháng 1 2019 lúc 17:53

Svac-xơ 

\(VT=\left(\frac{x+y}{z}+1\right)+\left(\frac{y+z}{x}+1\right)+\left(\frac{z+x}{y}+1\right)-3\)

\(VT=\frac{x+y+z}{x}+\frac{x+y+z}{y}+\frac{x+y+z}{z}-3=\left(x+y+z\right)\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)-3\)

\(\ge\left(x+y+z\right).\frac{\left(1+1+1\right)^2}{x+y+z}-3=9-3=6\)

Bình luận (0)
Nguyễn Linh Chi
12 tháng 1 2019 lúc 18:15

Các bạn chú ý khi chứng minh một bất đẳng thức có dấu bằng thì các bạn phải chỉ ra dấu "=" xảy ra khi nào?

(Dấu "=" xảy ra khi và chỉ khi x=y=z)

Bình luận (0)
Thắng Nguyễn
Xem chi tiết
Ngọc Vĩ
Xem chi tiết
Lightning Farron
19 tháng 6 2016 lúc 18:09

Dự đoán dấu bằng có khi (x,y,z)(x,y,z) là các hoán vị (0;1;1).

Từ đó ta đánh giá làm mất căn:

Ta có:

\(4\sqrt{2}.\sqrt{\frac{xy+yz+zx}{x^2+y^2+z^2}}=\frac{8\left(xy+yz+zx\right)}{\sqrt{\left(x^2+y^2+z^2\right).2\left(xy+yz+zx\right)}}\)\(\ge\frac{16\left(xy+yz+zx\right)}{\left(x+y+z\right)^2}\)

Do đó ta chỉ cần có

\(\frac{x}{y+z}+\frac{y}{z+x}+\frac{z}{x+y}+\frac{16\left(xy+yz+zx\right)}{\left(x+y+z\right)^2}\ge6\)

Không mất tính tổng quát, giả sử \(x\ge y\ge z\) suy ra \(x\ge y>0,z\ge0\)

Khi đó, ta chứng minh BĐT mạnh hơn

\(\frac{x}{y+z}+\frac{y}{z+x}+\frac{16\left(xy+yz+zx\right)}{\left(x+y+z\right)^2}\ge6\)

\(\Leftrightarrow\frac{x+y+z}{y+z}+\frac{x+y+z}{z+x}-\frac{8\left(x^2+y^2+z^2\right)}{\left(x+y+z\right)^2}\ge0\)

\(\Leftrightarrow\left(x+y+z\right)^3\left(x+y+2z\right)\ge8\left(x+z\right)\left(y+z\right)\left(x^2+y^2+z^2\right)\)

Hay \(\left(x+y+z\right)^4+z\left(x+y+z\right)^3\ge8z^2\left(x^2+y^2+z^2\right)+8\left(xy+yz+zx\right)\left(x^2+y^2+z^2\right)\)

Theo AM-GM:\(\left(x+y+z\right)^4=\left(x^2+y^2+z^2+2\left(xy+yz+zx\right)\right)^2\ge8\left(xy+yz+zx\right)\left(x^2+y^2+z^2\right)\)

Vậy ta chỉ cần chứng minh \(z\left(x+y+z\right)^3\ge8z^2\left(x^2+y^2+z^2\right)\)

\(BDT\Leftrightarrow\left(x+y+z\right)^3\ge8z\left(x^2+y^2+z^2\right)\)

Ta có:\(\left(x+y+z\right)^3=x^3+y^3+z^3+3x\left(y^2+z^2\right)+3y\left(z^2+x^2\right)+3z\left(x^2+y^2\right)+6xyz\ge x^3+y^3+z^3+3x^2y+3xy^2+5xyz+8z^3+3z\left(x^2+y^2\right)\)

Suy ra \(\left(x+y+z\right)^3-8z\left(x^2+y^2+z^2\right)\ge x^3+y^3+3x^2y+3xy^2+5xyz-5z\left(x^2+y^2\right)\)

\(=x^3+y^3+3x^2y+3xy^2+5z\left(xy-x^2-y^2\right)\ge x^3+y^3+3x^2y+3xy^2+5y\left(xy-x^2-y^2\right)\)

\(\ge x^3+y^3+3x^2y+3xy^2-5y\left(x^2+y^2\right)\)

\(=\left(x^2-y^2+4\right)\left(x-y\right)\ge0\)

BĐT được chứng minh.

 

 

 

 

Bình luận (5)
Lightning Farron
8 tháng 8 2016 lúc 14:35

v~ để cái này lp 9 thì ko hợp @@

Bình luận (1)
Đặng Minh Triều
18 tháng 6 2016 lúc 22:01

Oh shit!

Bình luận (6)
thien lu
Xem chi tiết
Trần Việt Linh
19 tháng 12 2016 lúc 13:12

Đặt: \(\frac{x-y}{z}+\frac{y-z}{x}+\frac{z-x}{y}=M\)

Ta có: 

\(M\cdot\frac{z}{x-y}=1+\frac{z}{x-y}\cdot\left(\frac{y-z}{x}+\frac{z-x}{y}\right)=1+\frac{z}{x-y}\cdot\frac{y^2-yz+xz-x^2}{xy}\)

\(=1+\frac{z}{x-y}\cdot\frac{\left(x-y\right)\left(z-x-y\right)}{xy}=1+\frac{2z^2}{xyz}=1+\frac{2z^3}{xyz}\)            (1)

Tương tự ta cũng có:

\(M\cdot\frac{x}{y-z}=1+\frac{2x^3}{xyz}\)              (2)

\(M\cdot\frac{y}{z-x}=1+\frac{2y^3}{xyz}\)            (3)

Từ (1);(2);(3) suy ra

\(M\cdot\left(\frac{z}{x-y}+\frac{x}{y-z}+\frac{y}{z-x}\right)=3+\frac{2\left(x^3+y^3+z^3\right)}{xyz}\)

Mà \(x+y+z=0\Rightarrow x^3+y^3+z^3=3xyz\)

Nên:

\(M\cdot\left(\frac{z}{x-y}+\frac{x}{y-z}+\frac{y}{z-x}\right)=3+\frac{2\cdot3xyz}{xyz}=9\)

=>đpcm

Bình luận (0)
Phan Hải Đăng
Xem chi tiết
Tran Le Khanh Linh
30 tháng 4 2020 lúc 7:16

Đặt \(P=\frac{x^3}{y+z}+\frac{y+z}{4}\ge x;\frac{y^2}{z+x}+\frac{z+x}{4}\ge y;\frac{z^2}{x+y}+\frac{x+y}{4}\ge z\)

\(\Rightarrow P\ge x+y+x-\frac{x+y+z}{2}=\frac{x+y+z}{2}=\frac{4}{2}=2\)

Bình luận (0)
 Khách vãng lai đã xóa
Không Có Tên
Xem chi tiết
vũ tiền châu
27 tháng 1 2018 lúc 13:28

Áp dụng BĐ Svac-xơ, ta có 

\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge\frac{9}{x+y+z}=\frac{9}{6}=\frac{3}{2}\left(ĐPCM\right)\)

^_^

Bình luận (0)
Thân Nhật Minh
Xem chi tiết
Thanh Tùng DZ
10 tháng 2 2019 lúc 16:49

đặt \(\frac{x-y}{z}=a;\frac{y-z}{x}=b;\frac{z-x}{y}=c\)

\(\Rightarrow\)\(\frac{z}{x-y}=\frac{1}{a};\frac{x}{y-z}=\frac{1}{b};\frac{y}{z-x}=\frac{1}{c}\)

Ta có : \(A=\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)

\(A=1+\frac{b}{a}+\frac{c}{a}+\frac{a}{b}+1+\frac{c}{b}+\frac{a}{c}+\frac{b}{c}+1=3+\frac{b+c}{a}+\frac{a+c}{b}+\frac{a+b}{c}\)

Ta có :  \(\frac{b+c}{a}=\left(b+c\right)\frac{1}{a}=\left(\frac{y-z}{x}+\frac{z-x}{y}\right)\frac{z}{x-y}=\frac{y^2-yz+xz-x^2}{xy}.\frac{z}{x-y}=\frac{\left(y-x\right)\left(x+y-z\right)}{xy}.\frac{z}{x-y}=\frac{\left(z-x-y\right)z}{xy}=\frac{2z^2}{xy}\)vì x + y + z = 0 \(\Rightarrow\)z = -x - y

Tương tự : \(\frac{a+c}{b}=\frac{2x^2}{yz}\)\(\frac{a+b}{c}=\frac{2y^2}{xz}\)

\(\frac{b+c}{a}+\frac{a+c}{b}+\frac{a+b}{c}=\frac{2z^2}{xy}+\frac{2x^2}{yz}+\frac{2y^2}{xz}=\frac{2\left(x^3+y^3+z^3\right)}{xyz}=\frac{2.3xyz}{xyz}=6\)( vì x + y + z = 0 \(\Rightarrow\)x3 + y3 + z3 = 3xyz )

Vậy A = 3 + 6 = 9

Bình luận (0)