Áp dụng liên tiếp 1 lần BĐT AM-GM :
\(\frac{y+z}{x}+\frac{z+x}{y}+\frac{x+y}{z}\ge3\sqrt[3]{\frac{\left(x+y\right)\left(y+z\right)\left(z+x\right)}{xyz}}\ge3\sqrt[3]{\frac{2\sqrt{xy}\cdot2\sqrt{yz}\cdot2\sqrt{zx}}{xyz}}\)
\(=3\sqrt[3]{\frac{8xyz}{xyz}}=3\sqrt[3]{8}=6\) ( đpcm )
Dấu "=" xảy ra \(\Leftrightarrow x=y=z\)
Cách khác:
Giả sử \(c=max\left\{x,y,z\right\}\)
\(VT-VP=\frac{\left(x-y\right)^2\left(8z-x-y\right)+\left(x+y-2z\right)^2\left(x+y\right)}{4xyz}\ge0\)
Tuy không đẹp nhưng em nghĩ là rất hay (em chỉ cần phân tích bằng tay)
Ngoài ra có thể dùng S*O*S:
\(VT-VP=\frac{\left(x-y\right)^2}{xy}+\frac{\left(y-z\right)^2}{yz}+\frac{\left(z-x\right)^2}{zx}\ge0\)
Tuy nhiên nó không đẹp bằng, vì nó tới tổng của 3 bình phương lận trong khi của em chỉ cần 2 bình phương.