Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Sunset Khánh Linh
Xem chi tiết
hoang nang
Xem chi tiết
Phú Nguyễn
16 tháng 12 2021 lúc 20:12

D

Nguyễn Lê Phước Thịnh
16 tháng 12 2021 lúc 20:13

b: Xét ΔADH  và ΔAEH 

AH chung

HD=HE

Do đó: ΔADH=ΔAEH

Trần gia huy
Xem chi tiết
Nguyễn Lê Phước Thịnh
14 tháng 1 2022 lúc 20:37

a: Xét ΔABC vuông tại A và ΔADC vuông tại A có 
AB=AD

AC chung

Do đó: ΔABC=ΔADC

b: Xét ΔCDH vuông tại D và ΔCBH vuông tại B có 

CH chung

CD=CB

Do đó: ΔCDH=ΔCBH

Suy ra: DH=BH

Trang Dang
Xem chi tiết
OwO Yummy
Xem chi tiết
runtyler
Xem chi tiết
Nhật Hạ
25 tháng 2 2020 lúc 16:57

A M N B C F H D E I

Thấy cái ý △AMN cân với cái chứng minh BAC = 1/2 MAN cũng ko lên quan lắm. Tham khảo qua ạ tại câu b hơi có vấn đề :(

a) Xét △AHB và △AHC có:

AHB = AHC (= 90o)

AH: chung

AB = AC (△ABC cân)

=> △AHB = △AHC (ch-cgv)

b) Xét △ADM và △ADH có:

ADM = ADH (= 90o)

DM = DH (gt)

AD: chung

=> △ADM = △ADH (2cgv)

=> AM = AH (2 cạnh tương ứng) (1)

Xét △ANE và △AHE có:

AEH = AEN (= 90o)

EH = EN (gt)

AE: chung

=> △ANE = △AHE (2cgv)

=> AN = AH (hai cạnh tương ứng) (2)

Từ (1) và (2) => AM = AN => △AMN cân tại A

Ta có: MAN = MAB + BAH + HAC + CAN

Mà MAB = HAB, HAC = CAN (suy ra được từ các tam giác bằng nhau)

=> MAN = 2BAH + 2 HAC

=> MAN = 2BAC

=> BAC = 1/2MAN

c) Ta có: HAD = HAE (△AHB = △AHC)

Mà HAD = DAM, HAE = EAN

=> HAD + DAM = HAE + EAN

=> HAM = HAN

Gọi giao điểm AH và MN là F

Xét △AFM và △AFN có:

AF: chung

FAM = FAN (cmt)

AM = AN (cmt)

=> △AFM = △AFN (c.g.c)

=> AFM = AFN (2 góc tương ứng)

Mà AFM + AFN = 180o => AFM = AFN = 90o

=> AH vuông góc MN (1)

Gọi giao điểm của DE và AH là I

Xét △ADH và △AEH có:

ADH = AEH (= 90o)

AH: chung

HAD = HAE (△HAB = △HAC)

=> △ADH = △AEH (ch-gn)

=> AD = AE (2 cạnh tương ứng)

Xét △AID và △AIE có:

AI: chung

IAD = IAE (cmt)

AD = AE (cmt)

=> △AID = △AIE (c.g.c)

=> AID = AIE (2 góc tương ứng)

Mà AID + AIE = 180o => AID = AIE = 90o

=> AH vuông góc DE (2)

Từ (1) và (2) => MN // DE

Khách vãng lai đã xóa
Nguyễn Linh Chi
25 tháng 2 2020 lúc 17:54

d) \(\Delta\)ABC cân tại A  có AH là đường cao

=> AH là đường trung tuyến

=> H là trung điểm BC 

=> BH = HC = BC : 2 = 3 ( cm )

\(\Delta\)ABH vuông tại H  => AB2 - BH2 = AH2 => AH = 4 cm

=> S ( \(\Delta\)ABH ) = \(\frac{1}{2}\)BH . AH =\(\frac{1}{2}\) HD . AB 

=> 3.4 = HD . 5 => HD = 2,4 cm

\(\Delta\)BDH vuông tại D => BD2 = BH2 - HD = 3,24 => BD = 1,8 cm

Khách vãng lai đã xóa
Phạm Thị Hà Anh
Xem chi tiết
Đỗ Thụy Cát Tường
Xem chi tiết
Quý Thiện Nguyễn
Xem chi tiết