Mọi người ơi!!!Giúp mik với!!
Cho tam giác ABC vuông tại A. Lấy điểm D trên cạnh BC. Kẻ DH vuông góc với AC. Trên tia DH lấy điểm E sao cho HE = HD. Từ D kẻ tia Dx // AC. Chứng minh Dx vuông góc với DE
Vẽ hình hộ mik luôn nha!!!Thank you!!!
Cho DABC vuông tại A. Lấy điểm D trên cạnh BC. Kẻ DH ^AC. Trên tia DH lấy điểm E sao cho HE=HD. Chứng minh:
a) BAˆD = ADˆE ; b) DADH=DAEH, từ đó suy ra AD = AE.
c) Từ D kẻ tia Dx // AC. Chứng minh Dx ^ DE.
b: Xét ΔADH và ΔAEH
AH chung
HD=HE
Do đó: ΔADH=ΔAEH
) Cho tam giác ABC vuông tại A, trên tia đối của tia AB lấy điểm D sao cho AB = AD
a/ Chứng minh tam giác ABC=TAM GIÁC ADC
b/ Từ D kẻ tia Dx vuông góc với DC, Từ B kẻ tia By vuông góc với BC chúng cắt nhau tại H. chứng minh DH = BH
c/ Chứng minh DH//BC
a: Xét ΔABC vuông tại A và ΔADC vuông tại A có
AB=AD
AC chung
Do đó: ΔABC=ΔADC
b: Xét ΔCDH vuông tại D và ΔCBH vuông tại B có
CH chung
CD=CB
Do đó: ΔCDH=ΔCBH
Suy ra: DH=BH
Cho tam giác ABC vuông tại A. Lấy điểm D trên cạnh BC. Kẻ DH vuông góc với AC. Trên tia DH lấy điểm E sao cho HE = HD. Từ D kẻ tia Dx // AC. Chứng minh Dx vuông góc với DE
Cho tam giác ABC vuông tại A có đường phân giác BD ( D thuộc cạnh AC ). Trên tia đối tia AC lấy điểm E sao cho AE = AD . Kẻ DH vuông góc với BC tại H
a) So sánh BD và BC.
b) Chứng minh: tam giác BED cân.
c) Trên tia đối tia HD lấy điểm K sao cho HK = HD. Chứng minh BE = BK .
d) Gọi G là giao điểm của EH và AK. Chứng minh GK = 2GH .
Câu 1: Cho tam giác ABC có góc A= 90 độ. kẻ AH vuông góc với BC (H e BC) Trên đường vuông góc với BC tại điểm D không cùng nửa mặt phẳng bờ BC với điểm A sao cho AH=BD chứng minh a) tam giác AHB=DBH b) hai đường thẳng AB và DH có song song không? vì sao?
Câu 2: Cho góc nhọn xOy. Trên tia Ox lấy điểm A, lấy điểm B trên tia Oy sao cho OA=OB. Trên tia Ax lấy điểm C, trên tia By lấy điểm D sao cho AC=BD chứng minh AD=BC. gọi E là giao điểm AD và BC, chứng minh tam giác EAD=EBD.
Câu 3: Cho tam giác ABC vuông tại A, kẻ phân giác BD (D e AC), kẻ DE vuông góc với BC tại E. Chứng minh BA=BE
Câu 4: Cho tam giác ABC vuông tại A, kẻ phân giác BD (D e AC), kẻ DE vuông góc với BC tại E. gọi F là giao điểm của tia BA và ED. chứng minh tam giác BDA=BDE và DC=DF
Giúp mình giải lun nhé. Giúp mình đi mình Tick cho!!!
Cho tam giác ABC vuông tại A. Lấy điểm D trên cạnh BC, kẻ DH vuông AC. Trên tia DH lấy điểm E sao cho HE =HD. CM:a) góc BAD =ADE;b)AD=AE ;c) góc AED=BAD
Bài 4: (3 điểm) Cho tam giác ABC cân tại A, kẻ AH vuông góc với BC (H thuộc BC). Kẻ HD, HE lần lượt vuông góc với AB và AC (D thuộc AB, E thuộc AC). Trên tia đối của tia DH lấy điểm M; trên tia đối của tia EH lấy điểm N sao cho DM = DH; EN = EH.
a) Chứng minh tam giác ABH = ACH ;
b) Chứng minh tam giác AMN là tam giác cân, từ đó suy ra góc BAC = 1/2 góc MAN
c) Chứng minh MN//DE.
d) Cho AB = 5cm, BC = 6cm. Tính độ dài BD.
Thấy cái ý △AMN cân với cái chứng minh BAC = 1/2 MAN cũng ko lên quan lắm. Tham khảo qua ạ tại câu b hơi có vấn đề :(
a) Xét △AHB và △AHC có:
AHB = AHC (= 90o)
AH: chung
AB = AC (△ABC cân)
=> △AHB = △AHC (ch-cgv)
b) Xét △ADM và △ADH có:
ADM = ADH (= 90o)
DM = DH (gt)
AD: chung
=> △ADM = △ADH (2cgv)
=> AM = AH (2 cạnh tương ứng) (1)
Xét △ANE và △AHE có:
AEH = AEN (= 90o)
EH = EN (gt)
AE: chung
=> △ANE = △AHE (2cgv)
=> AN = AH (hai cạnh tương ứng) (2)
Từ (1) và (2) => AM = AN => △AMN cân tại A
Ta có: MAN = MAB + BAH + HAC + CAN
Mà MAB = HAB, HAC = CAN (suy ra được từ các tam giác bằng nhau)
=> MAN = 2BAH + 2 HAC
=> MAN = 2BAC
=> BAC = 1/2MAN
c) Ta có: HAD = HAE (△AHB = △AHC)
Mà HAD = DAM, HAE = EAN
=> HAD + DAM = HAE + EAN
=> HAM = HAN
Gọi giao điểm AH và MN là F
Xét △AFM và △AFN có:
AF: chung
FAM = FAN (cmt)
AM = AN (cmt)
=> △AFM = △AFN (c.g.c)
=> AFM = AFN (2 góc tương ứng)
Mà AFM + AFN = 180o => AFM = AFN = 90o
=> AH vuông góc MN (1)
Gọi giao điểm của DE và AH là I
Xét △ADH và △AEH có:
ADH = AEH (= 90o)
AH: chung
HAD = HAE (△HAB = △HAC)
=> △ADH = △AEH (ch-gn)
=> AD = AE (2 cạnh tương ứng)
Xét △AID và △AIE có:
AI: chung
IAD = IAE (cmt)
AD = AE (cmt)
=> △AID = △AIE (c.g.c)
=> AID = AIE (2 góc tương ứng)
Mà AID + AIE = 180o => AID = AIE = 90o
=> AH vuông góc DE (2)
Từ (1) và (2) => MN // DE
d) \(\Delta\)ABC cân tại A có AH là đường cao
=> AH là đường trung tuyến
=> H là trung điểm BC
=> BH = HC = BC : 2 = 3 ( cm )
\(\Delta\)ABH vuông tại H => AB2 - BH2 = AH2 => AH = 4 cm
=> S ( \(\Delta\)ABH ) = \(\frac{1}{2}\)BH . AH =\(\frac{1}{2}\) HD . AB
=> 3.4 = HD . 5 => HD = 2,4 cm
\(\Delta\)BDH vuông tại D => BD2 = BH2 - HD2 = 3,24 => BD = 1,8 cm
cho tam giác nhọn abc từ điểm d trên cạnh bc vẽ các tia Dx,Dy sao cho Dx vuông góc với AB, Dy vuông góc với AC. Tia Dx cắt AB tại H, tia Dy cắt AC tại K. Trên tia Dx,Dy lấy điểm E và F sao cho HE=HD, KD=KF, È cắt AB, AC theo thứ tự ở M,N.
a, Chứng minh: AE=AF
b, chứng minh góc EAF= 2 lần góc BAC
c, chứng minh: DA là tia phân giác MDN
Cho tam giác ABC vuông tại A (AB < AC). Tia phân giác góc B cắt AC tại D. Kẻ DH vuông góc với BC. Lấy điểm E trên cạnh AC sao cho AE = AB. Đường thẳng vuông góc với AE tại E cắt DH tại K. Qua B kẻ đường vuông góc với EK tại I. Chứng minh:
a, BA = BH (Đã chứng minh)
b, Góc DBK = 45 độ (Đã chứng minh)
c, BC = IK + AC
Mong được mọi người giúp đỡ! Em xin cảm ơn trước ạ!