Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
selena doris
Xem chi tiết
Thanh Hoàng Thanh
9 tháng 3 2022 lúc 9:39

a) Xét tam giác AMB và tam giác DMC:

AM = DM (gt).

BM = CM (M là trung điểm của cạnh BC).

\(\widehat{AMB}=\widehat{DMC}\) (Đối đỉnh).

\(\Rightarrow\Delta AMB=\Delta DMC\left(c-g-c\right).\)

b) Xét tam giác ABD và tam giác DCA:

AB = DC \(\left(\Delta AMB=\Delta DMC\right).\)

AD chung.

\(\widehat{BAD}=\widehat{CDA}\) \(\left(\Delta AMB=\Delta DMC\right).\)

\(\Rightarrow\Delta ABD=\Delta DCA\left(c-g-c\right).\)

Xét \(\Delta ABD:AB+BD>AD.\Leftrightarrow AB+BD>2AM.\)

Mà \(BD=AC\) \(\left(\Delta ABD=\Delta DCA\right).\)

\(\Rightarrow AB+AC>2AM.\)

Marco
Xem chi tiết
Anh Quoc Trinh
Xem chi tiết
OH-YEAH^^
6 tháng 12 2021 lúc 20:31

Bn tự vẽ hình

a) Xét Δ AMB và Δ AMC

AB=AC

BM=MC

AM chung

⇒ Δ AMB = Δ AMC

b) Xét Δ AMB và  Δ DMC

DM=AM

BM=CM

AMB=CMD (đối đỉnh)

⇒ Δ AMB = Δ DMC

⇒ ABM=DCM (2 góc t.ứng)

Mà 2 góc này ở vị trí SLT

⇒ AB//CD

c) Bn tự lm, tương tự phần b)

Thanh Hoàng Thanh
6 tháng 12 2021 lúc 20:34

a) Xét tam giác AMB và tam giác AMC có:

+ AB = AC (gt).

+ MB = MC (M là trung điểm của BC).

+ AM chung.

=> Tam giác AMB = Tam giác AMC (c - c - c).

b) Xét tứ giác ABCD có:

+ M là trung điểm của BC (gt).

+ M là trung điểm của AD (MD = MA).

=> Tứ giác ABCD là hình bình hành (dhnb).

=> AB // CD (Tính chất hình bình hành).

c) Tứ giác ABCD là hình bình hành (cmt).

=> AC // BD (Tính chất hình bình hành).

Mon an
Xem chi tiết
Nguyễn Lê Phước Thịnh
18 tháng 12 2023 lúc 7:40

a: Xét ΔAMB và ΔDMC có

MA=MD

\(\widehat{AMB}=\widehat{DMC}\)

MB=MC

Do đó: ΔAMB=ΔDMC

b: Xét ΔMBD và ΔMCA có

MB=MC

\(\widehat{BMD}=\widehat{CMA}\)

MD=MA

Do đó: ΔMBD=ΔMCA

=>\(\widehat{MBD}=\widehat{MCA}\)

mà hai góc này là hai góc ở vị trí so le trong

nên BD//AC

c: Xét ΔDKB vuông tại K và ΔAHC vuông tại H có

DB=AC

\(\widehat{DBK}=\widehat{ACH}\)

Do đó: ΔDKB=ΔAHC

=>BK=CH

d: Xét tứ giác ABCE có

I là trung điểm chung của AC và BE

=>ABCE là hình bình hành

=>AB//CE và AB=CE

Ta có; ΔMAB=ΔMDC

=>AB=DC

Ta có: ΔMAB=ΔMDC

=>\(\widehat{MAB}=\widehat{MDC}\)

mà hai góc này là hai góc ở vị trí so le trong

nên AB//DC

Ta có: AB//DC

AB//CE

DC,CE có điểm chung là C

Do đó: D,C,E thẳng hàng

ta có: AB=CD

AB=CE

Do đó: DC=CE

mà D,C,E thẳng hàng

nên C là trung điểm của DE

thân thị huyền
Xem chi tiết
Trần Việt Linh
16 tháng 12 2016 lúc 19:32

A B C D M

a) Xét ΔAMB và ΔDMC có:

MA=MD(gt)

\(\widehat{AMB}=\widehat{DMC}\left(đđ\right)\)

MB=MC(gt)

=> ΔAMB=ΔDMC(c.g.c)

b)Vì: ΔAMB=ΔDMC(cmt)

=> AB=DC ; \(\widehat{ABC}=\widehat{DCB}\)

Xét ΔABC và ΔDCB có:

BC: cạnh chung

\(\widehat{ABC}=\widehat{DCB}\left(cmt\right)\)

AB=DC(cmt)

=> ΔABC=ΔDCB(c.g.c)

=>AC=BD

\(\widehat{ACB}=\widehat{DBC}\) . Mà hai góc này ở vị trí sole trong

=>AC//BD

Vì: ΔABC=ΔDCB(cmt)

=> \(\widehat{BAC}=\widehat{CDB}=90^o\)

Phương Vy
Xem chi tiết
Nguyễn Hoàng Minh
2 tháng 12 2021 lúc 18:43

\(a,\left\{{}\begin{matrix}AB=AC\\BM=MC\\AM\text{ chung}\end{matrix}\right.\Rightarrow\Delta AMB=\Delta AMC\left(c.c.c\right)\\ b,\left\{{}\begin{matrix}BM=MC\\\widehat{AMB}=\widehat{CMD}\left(đđ\right)\\AM=MD\end{matrix}\right.\Rightarrow\Delta AMB=\Delta DMC\left(c.g.c\right)\\ \Rightarrow\widehat{ABC}=\widehat{BCD}\\ \text{Mà 2 góc này ở vị trí slt nên }AB\text{//}CD\\ c,\left\{{}\begin{matrix}BM=MC\\\widehat{AMC}=\widehat{BMD}\\AM=MD\end{matrix}\right.\Rightarrow\Delta AMC=\Delta DMB\left(c.g.c\right)\\ \Rightarrow\widehat{ACB}=\widehat{CBD}\\ \text{Mà 2 góc này ở vị trí slt nên }AC\text{//}BD\)

Thanh phong Lê nguyễn
Xem chi tiết
Trinh Nguyễn
Xem chi tiết
Nguyễn Lê Phước Thịnh
16 tháng 5 2022 lúc 9:32

a: Xét ΔAMB và ΔDMC có

MA=MD

\(\widehat{AMB}=\widehat{DMC}\)

MB=MC

Do đó: ΔAMB=ΔDMC

b: ta có: ΔAMB=ΔDMC

nên AB=DC

Nhi Huỳnh
Xem chi tiết
Nguyễn Lê Phước Thịnh
7 tháng 8 2021 lúc 13:10

a) Xét ΔAMB và ΔDMC có 

MA=MD(gt)

\(\widehat{AMB}=\widehat{DMC}\)

MB=MC

Do đó: ΔAMB=ΔDMC(c-g-c)

b) Xét ΔAMC và ΔDMB có 

MA=MD

\(\widehat{AMC}=\widehat{DMB}\)

MC=MB

Do đó: ΔAMC=ΔDMB(c-g-c)

Suy ra: AC=BD(hai cạnh tương ứng) và \(\widehat{ACM}=\widehat{DBM}\)(hai góc tương ứng)

mà hai góc này là hai góc ở vị trí so le trong

nên AC//BD