tìm nghiệm nguyên của phương trình:\(2x^2y^2-3x^2y+2xy^2+x^2-x+y=0\)
Giải phương trình nghiệm nguyên : \(2x^2y^2-3x^2y+2xy^2+x^2-x+y=0\)
giải phương trình:
\(x^3-x^2-x-2=0\)
\(\frac{x^2}{\sqrt{3x-2}}-\sqrt{3x-2}=1-x\)
tìm nghiệm nguyên của phương trình;
\(2x^2+y^2-2xy+2y-6x+5=0\)
Bài 1 :
a) \(x^3-x^2-x-2=0\)
\(\Leftrightarrow x^3-2x^2+x^2-2x+x-2=0\)
\(\Leftrightarrow\left(x^3-2x^2\right)+\left(x^2-2x\right)+\left(x-2\right)=0\)
\(\Leftrightarrow x^2\left(x-2\right)+x\left(x-2\right)+\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x^2+x+1\right)=0\)(1)
Vì \(x^2+x+1=x^2+2.\frac{1}{2}.x+\frac{1}{4}+\frac{3}{4}=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\)
Vì \(\left(x+\frac{1}{2}\right)^2\ge0\forall x\)\(\Rightarrow\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\forall x\)
\(\Rightarrow x^2+x+1\ge\frac{3}{4}\forall x\)(2)
Từ (1) và (2) \(\Rightarrow x-2=0\)\(\Leftrightarrow x=2\)
Vậy \(x=2\)
Bài 2:
\(2x^2+y^2-2xy+2y-6x+5=0\)
\(\Leftrightarrow x^2-2xy+y^2-2x+2y+1+x^2-4x+4=0\)
\(\Leftrightarrow\left(x^2-2xy+y^2\right)-\left(2x-2y\right)+1+\left(x^2-4x+4\right)=0\)
\(\Leftrightarrow\left(x-y\right)^2-2\left(x-y\right)+1+\left(x-2\right)^2=0\)
\(\Leftrightarrow\left(x-y-1\right)^2+\left(x-2\right)^2=0\)(1)
Vì \(\left(x-y-1\right)^2\ge0\forall x,y\); \(\left(x-2\right)^2\ge0\forall x\)
\(\Rightarrow\left(x-y-1\right)^2+\left(x-2\right)^2\ge0\forall x,y\)(2)
Từ (1) và (2) \(\Rightarrow\left(x-y-1\right)^2+\left(x-y\right)^2=0\)
\(\Leftrightarrow\hept{\begin{cases}x-y-1=0\\x-2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}y=x-1\\x=2\end{cases}}\Leftrightarrow\hept{\begin{cases}y=1\\x=2\end{cases}}\)
Vậy \(x=2\)và \(y=1\)
Giải phương trình nghiệm nguyên
a) \(x^2+2y^2-2xy+4x-3y-26=0\)
b) \(x^2+3y^2+2xy-2x-4y-3=0\)
c) \(2x^2+y^2+3xy+3x+2y+2=0\)
d) \(3x^2-y^2-2xy-2x-2y+8=0\)
Tìm nghiệm nguyên của phương trình :
A) X2 + XY + Y2 = 2X +Y
B)X2 - 2XY + 5Y = Y +1
C) X2 + 2Y2 - 2XY + 3X - 3Y +2 = 0
D) 2( X + Y ) +XY= X2 + Y2
E) 3(X2 - XY + Y2 ) = X - 2Y
tìm nghiệm nguyên của phương trình 2x^3 -x^2y + 3x^2 +2x -y=2
2x3-x2y+3x2+2x-y=2
(2x3+2x)-(x2y+y)+(3x2+3)=5
2x(x2+1)-y(x2+1)+3(x2+1)=5
(x2+1)(2x-y+3)=5
Mà x2>=0 => x2+1>0
=> (x2+1)(2x-y+3)=5=1.5=5.1
•x2+1=1 và 2x-y+3=5 => x=0; y=-2
•x2+1=5 và 2x-y+3=1=> x=2;y=6 hoặc x=-2; y=-2
Vậy (x;y) là (0;-2);(2;6);(-2;-2)
tìm nghiệm nguyên của phương trình \(^{x^2y+1=x^2+2xy+2x+y}\)
Tìm nghiệm nguyên của phương trình:
a) \(2x^2+2y^2+x^2+xy^2-x^2y^2=37\)
b)\(x^2y+x+xy^2+y+2xy=9\)
b) x2y + x + xy2 + y + 2xy = 9
xy(x + y + 2) + (x + y + 2) = 11
<=> (xy + 1)(x + y + 2) = 11
Xét các TH
+) \(\hept{\begin{cases}xy+1=1\\x+y+2=11\end{cases}}\) <=> \(\hept{\begin{cases}xy=0\\x+y=9\end{cases}}\) <=> x = 0 => y = 9 hoặc y = 0 => x = 9
+) \(\hept{\begin{cases}xy+1=-1\\x+y+2=-11\end{cases}}\)<=> \(\hept{\begin{cases}xy=-2\\x+y=-13\end{cases}}\) <=> \(\hept{\begin{cases}x=-13-y\\y\left(-13-y\right)=-2\end{cases}}\)
<=> \(\hept{\begin{cases}x=-13-y\\y^2+13y-2=0\end{cases}}\)(loại)
+) \(\hept{\begin{cases}xy+1=11\\x+y+2=1\end{cases}}\) <=> \(\hept{\begin{cases}xy=10\\x+y=-1\end{cases}}\) <=> \(\hept{\begin{cases}y\left(-1-y\right)=10\\x=-1-y\end{cases}}\) <=> \(\hept{\begin{cases}y^2+y+10=0\\x=-1-y\end{cases}}\)(loại)
+) \(\hept{\begin{cases}xy+1=-11\\x+y+2=-1\end{cases}}\) <=> \(\hept{\begin{cases}xy=-12\\x+y=-3\end{cases}}\) <=> \(\hept{\begin{cases}y\left(-3-y\right)=-12\\x=-3-y\end{cases}}\) <=> \(\hept{\begin{cases}y^2+3y-12=0\\x=-3-y\end{cases}}\) (loại)
tìm nghiệm nguyên của phương trình x2+2y2-2xy+3x-2y+2
PT \(\Leftrightarrow\left(x^2+3x\right)-2xy+\left(2y^2-2y+2\right)=0\) (1)
(1) có nghiệm khi và chỉ khi \(\Delta'=y^2-\left(2y^2-2y+2\right)\ge0\)
\(\Leftrightarrow-y^2+2y-2\ge0\Leftrightarrow y^2-2y+2\le0\) (2)
Mà \(y^2-2y+2=\left(y-1\right)^2+1\ge1>0\forall y\)
Suy ra (2) vô nghiệm suy ra (1) vô nghiệm.
Vậy phương trình trên không có nghiệm nguyên.
Tìm nghiệm nguyên của các phương trình:
1) \(x^2y^2-2xy=x^2+16y^2\)
2) \(3x^2y^2+x^2+y^2=5xy\)
tìm nghiệm nguyên của phương trình:
\(2x^2+y^2-2xy+2y-6x+5=0\)
ta có vt = (x - y)2 + ( x + x )2 +z2 = 12
ta có chính phương <= 12 là các số 1,4,9 ta tháy bộ 3 số chính phương cọng lại bằng 12 chỉ co ( 4 , 4 ,4 ) vậy ta có hệ
( x - y )2 = z2 =4
pần còn lại bạn tự giải nha