Tìm số tự nhiên n để A= 3n3 - 5n2 +3n - 5 là số nguyên tố.
Tìm tất cả các số tự nhiên n để n2+16n là số nguyên tố
Tìm tất cả các số tự nhiên a để19a-8a là số nguyên tố
Tìm tất cả các số tự nhiên để 3n+60 là số nguyên tố
Bài 1. Tìm số tự nhiên a nhỏ nhất để a : 7 dư 4; a : 9 dư 5 và a : 15 dư 8.
Bài 2. a) Tìm số tự nhiên n để 16 – 3n là ước của 2n + 1.
b) Tìm số tự nhiên n để n2 + 6n là số nguyên tố.
Bài 3. a) Tìm số nguyên tố p sao cho p + 2; p + 6; p + 8; p + 12; p + 14 cũng là số nguyên tố
b) Tìm số tự nhiên n để các số sau nguyên tố cùng nhau: 4n – 3 và 6n + 1
tìm n là số tự nhiên để
a/ n^2 -3n là số nguyên tố
b/ m.n+3n-2m-6 là số nguyên tố
help me
1.Tìm số tự nhiên n để:
a, 2n+1 và 7n+2 là 2 số nguyên tố cùng nhau.
b,9n+24 và 3n+4 là 2 số nguyên tố cùng nhau.
2.Chứng minh rằng 2n+1 và 3n+1 (n là số tự nhiên) là 2 số nguyên tố cùng nhau.
\(Taco::::::::::::::::::::::::::::::::::::::::::::::::::::::::::\)
\(GỌi:ƯCLN\left(2n+1;7n+2\right)=d\Rightarrow7\left(2n+1\right)-2\left(7n+2\right)⋮d\Rightarrow3⋮d\)
Để 2n+1 và 7n+2 nguyên tố cùng nhau thì: 2n+1 hoặc 7n+2 ko chia hết cho 3
Giả sử: 2n+1 chia hết cho 3
=> 2n+1-3 chia hết cho 3
=> 2n-2 chia hết cho 3
=> 2(n-1) chia hết cho 3=> n-1 chia hết cho 3
Giả sử: 7n+2 chia hết cho 3
=> 7n+2-9 chia hết cho 3
=>.........
Vậy với n khác 3k+1;3k+2 thì thỏa mãn
Tìm số tự nhiên n khác 0 để A=2n^3−3n+1 là số nguyên tố
A = \((2n)^{3} - 3n + 1 \)
\(\Leftrightarrow\) A = \((2n)^{3} - 2n - n + 1\)
\(\Leftrightarrow\) A = \(2n (n^{2} - 1) - ( n-1)\)
\(\Leftrightarrow\) A = \(2n(n - 1)(n+1)-(n-1)\)
\(\Leftrightarrow\) A = \((2n^{2} +2n-1)(n-1)\)
Vì A là số nguyên tố nên n - 1 = 1
\(\Rightarrow\) n = 2
Tìm các số tự nhiên n để giá trị biểu thức sau là số nguyên tố :
3n^3 - 5n^2 + 3n - 5
Tìm số tự nhiên n để 3n +18 là số nguyên tố.
Vì 3n+18=3(n+6) nên không có số tự nhiên n nào thỏa mãn 3n+18 là số nguyên tố
Vì 3n+18=3(n+6) nên không có số tự nhiên n nào thỏa mãn 3n+18 là số nguyên tố
2.Tìm số tự nhiên n để n^2+3n+2 là số nguyên tố
Đặt \(N=n^2+3n+2=\left(n+1\right)\left(n+2\right)\)
\(\Rightarrow N\) có ít nhất 2 ước tự nhiên là \(n+1\) và \(n+2\)
\(\Rightarrow N\) là số nguyên tố khi \(\left\{{}\begin{matrix}n+1=1\\n+2\text{ là số nguyên tố}\end{matrix}\right.\)
\(\Rightarrow n=0\)
n^2+3n là SNT tương đương với n(n+3)
Ta có: n+3-n=3 là số lẻ nên n và n+3 khác t/cl do đó luôn tồn tại 1 SC, n(n+3) chia hét cho 2
Để n(n+3) Là SNT thì nó phải = 2 . xét n= 0 thì ko thỏa mãn đề bài . Mà n>= 1=> n(n+3)>=4 và>2
=> n thuộc tập rỗng
Tìm số tự nhiên n để phân số A=6n+1/3n+2. Để n có giá trị là số nguyên tố