chung minh voi a,b,c la do dai 3 canh cua tam giac
\(a\left(b-c\right)^2+b\left(c-a\right)^2+c\left(a-b\right)^2>a^2+b^2+c^2\)
cho tam giac co do dai 3 canh a , b ,c thoa man
\(\left(a+b-c\right)^3+\left(b+c-a\right)^3+\left(c+a-b\right)^3=a^3+b^3+c^3\)
chung minh tam giac do la tam giac deu
cho a b c la 3 cach cua 1 tam giac thoa \(2\left(a^2+b^2+c^2\right)=a\left(b^2+c^2\right)+b\left(c^2+a^2\right)+c\left(a^2+b^2\right)\)'chứng minh tam giác abc đều
Trần Huy tâm: Nếu đề sửa như bạn nói thì làm ntn nha:
Theo bài ra ta có:
\(2(a^3+b^3+c^3)=a(b^2+c^2)+b(c^2+a^2)+c(a^2+b^2)\)
\(\Leftrightarrow 2(a^3+b^3+c^3)=ab(a+b)+bc(b+c)+ca(c+a)\)
\(\Leftrightarrow [a^3+b^3-ab(a+b)]+[b^3+c^3-bc(b+c)]+[c^3+a^3-ca(c+a)]=0\)
\(\Leftrightarrow [a^2(a-b)-b^2(a-b)]+[b^2(b-c)-c^2(b-c)]+[c^2(c-a)-a^2(c-a)]=0\)
\(\Leftrightarrow (a-b)^2(a+b)+(b-c)^2(b+c)+(c-a)^2(c+a)=0\)
Ta thấy với mọi $a,b,c$ là 3 cạnh tam giác thì $(a-b)^2(a+b); (b-c)^2(b+c); (c-a)^2(c+a)\geq 0$
Do đó để tổng của chúng bằng $0$ thì $(a-b)^2(a+b)=(b-c)^2(b+c)=(c-a)^2(c+a)=0$
$\Rightarrow (a-b)^2=(b-c)^2=(c-a)^2=0$ (do $a+b,b+c,c+a\neq 0$)
$\Rightarrow a=b=c$
Hay tam giác $ABC$ đều. Ta có đpcm.
Bạn xem lại đề xem có thiếu điều kiện gì không? 2 vế trong ĐKĐB không cùng bậc nên nếu không có thêm đk gì thì làm sao chứng minh được tam giác đều?
cho a;b;c la do dai 3 canh cua 1 tam giac . c/m voi moi x;y;z:
\(\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}>\frac{2\left(x^2+y^2+z^2\right)}{a^2+b^2+c^2}\)
1.a) \(\frac{3}{4}\)x -- \(\frac{1}{3}\)= \(\frac{2}{3}\)x -- \(\frac{3}{5}\)
b) \(\frac{\left(-5\right)^{32}.20^{43}}{\left(-8\right)^{29}.125^{25}}\)
c) \(\left(\frac{1}{2}-x\right)^2\)= \(\left(-2\right)^2\)
2. Tim do dai 2 canh cua 1 hinh chu nhat ,biet ti so giua cac canh cua no bang 0,6 va chu vi bang 32cm .
3. Cho a = \(^{8^{12}.25^{19}}\). Tim so chu so cua a .
4. Cho tam giac ABC vuong tai A . Tia phan giac cua goc B cat canh AC tai D
a) Cho biet \(\widehat{ABC}\)= 400 . Tinh so do goc ABD
b) Tren canh BC lay diem E sao cho BE = BA . Chung minh tam giac BAD = tam giac BED va DE _|_ BC
c) Goi F la giao diem cua BA va ED . Chung minh rang tam giac ABC = tam giac EBF
d) Ve CK vuong goc voi BD tai K . Chung minh rang ba diem K , F , C thang hang .
cho a;b;c la 3 canh cua 1 tam giac. C/m voi moi x;y;z: \(\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}>\frac{2\left(x^2+y^2+z^2\right)}{a^2+b^2+c^2}\)
Goi a, b, c la do dai ba canh cua tam giac nhon \(h_a,h_b,h_c\)lan luot la ba duong cao tuong ung.
cmr\(\frac{h^2_a+h^2_b+h_c^2}{\left(a+b+c\right)^2}\)<1/4
Cho a , b , c la ba canh cua mot tam giac . CMR
\(2\left(ab+bc+ac\right)>a^2+b^2+c^2\)
bđt tam giác:
\(\hept{\begin{cases}a+b>c\Leftrightarrow ac+bc>c^2\\b+c>a\Leftrightarrow ab+ac>a^2\\a+c>b\Leftrightarrow ab+bc>b^2\end{cases}}\)
Cộng theo vế: \(2\left(ab+bc+ac\right)>a^2+b^2+c^2\)
giai ho minh bai nay voi
cho a,b,c la do dai 3 canh tam giac va an;bn;cn cung la do dai 3 canh tam giac voi n la so nguyen duong. Chung minh rang 2 trong 3 so a,b,c bang nhau
Do dai 3 canh cua tam giac ABC la a,b,c thoa man dieu kien
(a-b)2+(b - c)2 = 0
Chung minh tam giac ABC la tam giac deu.
do (a-b)2\(\ge\)0 ;(b-c)2\(\ge\)0
\(\Rightarrow\)(a-b)2+(b-c)2\(\ge\)0
mà (a-b)2+(b-c)2=0 (đề bài cho)
\(\Rightarrow\)(a-b)2=0;(b-c)2=0
\(\Rightarrow\)a-b=b-c=0
\(\Rightarrow\)a=b=c
Vậy tam giác ABC đều