\(\left(x^2+5x\right)\) chia hết cho (2x-4)
TÌM x sao cho \(\left(x^2+5x\right)\) chia hết cho 2x-4
TÌM x để \(\left(x^2+5x\right)\) chia hết cho (2x-4)
Cho đa thức \(P\left(x\right)=\dfrac{5x^3}{4}+\dfrac{5x^2}{6}-\dfrac{21x}{4}+\dfrac{1}{6}\). Tìm số dư khi chia \(P\left(x\right)\) cho \(2x-5\).
Lời giải:
Theo định lý Bê-du về phép chia đa thức, số dư của $P(x)$ khi chia $2x-5$ là $P(\frac{5}{2})=\frac{5}{4}(\frac{5}{2})^3+\frac{5}{6}(\frac{5}{2})^2-\frac{21}{4}.\frac{5}{2}+\frac{1}{6}=\frac{377}{32}$
Câu 1:
a) Cho hai đa thức A = \(5x^2-7x+2\) và B = \(4x^2+3x-1\) Tính A+B, A-B
b) Tìm m đề A\(\left(x\right)\) = \(2x^2-x+m\) chia hết cho đa thức B\(\left(x\right)\)= \(2x-5\)
Lời giải:
a.
$A+B=(5x^2-7x+2)+(4x^2+3x-1)=9x^2-4x+1$
$A-B=(5x^2-7x+2)-(4x^2+3x-1)=x^2-10x+3$
b.
$A(x)=2x^2-x+m=x(2x-5)+4x+m=x(2x-5)+2(2x-5)+m+10$
$=B(x)(x+2)+m+10$
Để $A(x)\vdots B(x)$ thì $m+10=0\Leftrightarrow m=-10$
Làm tính chia :
a) \(\left(2x^3+5x^2-2x+3\right):\left(2x^2-x+1\right)\)
b) \(\left(2x^3-5x^2+6x-15\right):\left(2x-5\right)\)
c) \(\left(x^4-x-14\right):\left(x-2\right)\)
C1: Xác định a, b để \(x^4-3x^2+ax+b\) chia hết cho \(x^2-3x+2\)
C2: sắp xếp các đa thức rồi đặt phép chia (chỉ cần sắp xếp giùm mk thôi còn mk tự chia)
a, \(\left(6x^6+2x^5-2+7x+x^2-15x^3-2x^4\right):\left(x+3x-1\right)\)
b, \(\left(17x^2-6x^4+5x^3-23x+7\right):\left(7-3x^2-2x\right)\)
làm nhanh giúp mk nhé mơn
C1: Gọi đa thức thương là Q(x)
Vì x^4 : x^2 = x^2
=> đa thức có dạng x^2+mx+n
Đề x^4 - 3x^2 + ax+b chia hết x^2 - 3x + 2
=> x^4 - 3x^2 + ax + b = (x^2 - 3x + 2)(x^2 + mx + n)
x^4+ 0x^3 - 3x^2 +ax+b = x^4 +mx^3 +(x^2)n -3x^3 -3mx^2 - 3xn + 2x^2 + 2mx + 2n
x^4 + 0x^3 -3x^2 + ax+b = x^4 + x^3(m-3) - x^2(3m - n -2) +x(2m - 3n) +2n
<=>| 0 = m-3 <=> | m = 3
| 3=3m-n-2 | b= 8
| a=2m-3n | n = 4
| b = 2n | a = -6
Vậy a= -6, b= 8
a.Tìm số thực m để đa thức \(P\left(x\right)=3x^3+2x^2-5x+m\) chia hết cho đa thức \(Q\left(x\right)=x+1\)
b.Tìm các số thực a, b để đa thức \(P\left(x\right)=2x^3+ax^2+bx+3\) chia hết cho đa thức \(Q\left(x\right)=x^2-3x+2\)
a, Ta có \(Q\left(x\right)=x+1=0\Leftrightarrow x=-1\)
Vậy P(x) chia hết cho Q(x) khi P(x) có nghiệm là -1 hay
\(3\left(-1\right)^3+2\left(-1\right)^2-5\left(-1\right)+m=0\Leftrightarrow m=-4\)
b.. ta có \(Q\left(x\right)=x^2-3x+2=0\Leftrightarrow\left(x-1\right)\left(x-2\right)=0\Leftrightarrow\orbr{\begin{cases}x=1\\x=2\end{cases}}\)
Vậy P(x) chia hết cho Q(x) khi P(x) có nghiệm là 1 và 2 hay
\(\hept{\begin{cases}2+a+b+3=0\\2.2^3+a.2^2+b.2+3=0\end{cases}}\Leftrightarrow\hept{\begin{cases}a+b=-5\\4a+2b=-19\end{cases}\Leftrightarrow}\hept{\begin{cases}a=-\frac{9}{2}\\b=-\frac{1}{2}\end{cases}}\)
xác định hằng số a và b sao cho
a)\(x^4+ax+b\)chia hết cho\(\left(x^2-4\right)\)
b)\(\left(x^3+ax+b\right)chiahetcho\left(x^2+2x-2\right)\)
c)\(x^4+ax^2+b\)chia hết cho\(\left(x^2-x+1\right)\)
d)\(x^4+ax^3+bx-1\)chia hết cho\(\left(x^2-1\right)\)
e) \(\left(ax^4+bx^3+1\right)\)chia hết cho\(\left(x-1\right)\)
f)\(ax^3+bx^2+5x-50\)chia hết cho\(\left(x^2+3x-10\right)\)
Làm tính chia:
a) \(\left(-2x^4+5x^3-x^2+8\right):\left(3x^2-1\right)\)
b) \(\left(5x^4-2x^2+5\right):\left(3x^2+1\right)\)