Tìm n thuộc N để:
n mũ 2 + 8 chia hết cho n+1
tìm n để:n mũ 2+2.n-3 chia hết cho n-1
các cậu đừng chúc tớ ngủ ngon vì các cậu đã làm tớ thao thức
Tìm n để:n^2+n+4 chia hết cho n+1
=>4 chia hết cho n+1
=>\(n+1\in\left\{1;-1;2;-2;4;-4\right\}\)
=>\(n\in\left\{0;-2;1;-3;3;-5\right\}\)
Tìm n để:n^2+n+4 chia hết cho n+1
Ta có:
\(n^2+n+4=\left(n^2+n\right)+4=n\left(n+1\right)+4\)
Để \(\left(n^2+n+4\right)⋮\left(n+1\right)\) thì \(4⋮\left(n+1\right)\)
\(\Rightarrow n+1\inƯ\left(4\right)=\left\{-4;-2;-1;1;2;4\right\}\)
\(\Rightarrow n\in\left\{-5;-3;-2;0;1;3\right\}\)
n2+n+4 ⋮ n+1
\(\Rightarrow\) n. n + n.1 +4 ⋮ n+1
\(\Rightarrow\) n . ( n+1) + 4 \(⋮\) n+1
Để n . ( n+1) +4 \(⋮\) 4 thì 4 \(⋮\) n+1 { Vì n . ( n+1) \(⋮\) 4}
\(\Rightarrow\) n +1 \(\in\) ( 4 )
\(\Rightarrow\) n+ 1 \(\in\) { \(\pm\) 1; \(\pm\)2; \(\pm\) 4}
\(\Rightarrow\) n \(\in\) { 0; -2 ; 1 ; -3 ; 3 ;-5}
Tìm n thuộc N sao cho n mũ 3 - 8 n mũ 2+2n chia hết cho n mũ 2 +1
tìm n là số tự nhiên để:
n^2+n chia hết cho n+1
Tìm n thuộc N để: n mũ 2 + 8 chia hết cho n+ 1
n^2+8 chia hết cho n+1
=> n^2-1+9 chia hết cho n+1
=> (n-1)(n+1) + 9 chia hết cho n+1
=> 9 chia hết cho n+1
=> n+1 là ước của 9 thôi =1;3;9
=> n=0;2;8.
cho B = 1+4+4 mũ 2 +........ 4 mũ 99
a] tìm n thuộc n để 3B +1 =4 mũ n
b] chứng minh rằng B chia hết cho 5 ; chia hết cho 8
mk chỉ giúp phần a nha
B=1+ 4+42 +....+ 499
4B=4+ 42+43+...+4100
4B-B=4100-1
3B=4100-1
B= 1 + 4+4 MŨ 2+.....+4 MŨ 99
4B= 4+4 MŨ 2+4 MŨ 3+.....+4 MŨ 100
4B-B=4 MŨ 100- 1
3B=4 mũ 100-1
Ta có biếu thức3B+1=4 mũ n=4 mũ 100 -1+1=4 mũ n
Suy ra 4 mũ 100=4 mũ n
suy ran=100
a) 4B= 4+42+43+...+499+4100
B=1+4+42+43+...+499
3B=4100-1
->3B+1=4100 ->n=100
b) B=(1+4)+(42+43)+(44+45)+...+(498+499)
=5.1+5.42+5.44+...+5.498
=5(1+42+44+...+498) chia hết cho 5 (đpcm)
4; 42; 43;...; 499 đều là số chẵn, chỉ có 1 là số lẻ -> Tổng = B lẻ -> B không chia hết cho 8.
Bạn chép sai đề rồi thì phải!!!!
a) Tìm n thuộc N để n mũ 10 + 1 chia hết cho 10
b) Tìm n thuộc N để n mũ 2 + n + 2 chia hết cho 5
Tìm n thuộc N để:
n mũ 2 + 8 chia hết cho n+1
Gọi f( x ) = n2 + 8
g( x ) = n + 1
Cho g( x ) = 0
\(\Leftrightarrow\)n + 1 = 0
\(\Rightarrow\)n = - 1
\(\Leftrightarrow\)f( - 1 ) = ( - 1 )2 + 8 = 9
Để f( x ) \(⋮\)g( x )
\(\Rightarrow\)n + 1 \(\in\)Ư( 9 ) = { 1 ; 3 ; 9 }
Ta lập bảng :
n + 1 | 1 | 3 | 9 |
n | 0 | 2 | 8 |
Vậy : n\(\in\){ 0 ; 2 ; 8 }