Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
zitzetey
Xem chi tiết
marie
Xem chi tiết
Võ Tuấn Kiệt
Xem chi tiết
Lâm Tinh Thần
Xem chi tiết
Nguyễn Việt Lâm
23 tháng 11 2018 lúc 22:40

Ta có các công thức cơ bản sau: \(cos\left(90^0+x\right)=-sinx;sin\left(90^0-x\right)=cosx\)

\(cot\left(90^0-x\right)=tanx;tan\left(90^0+x\right)=-cotx\)

Thay vào bài toán:

\(\dfrac{1-\left(-sinx\right)^2}{1-cos^2x}-tanx.\left(-cotx\right)=\dfrac{1-sin^2x}{1-cos^2x}+tanx.cotx\)

\(=\dfrac{cos^2x}{sin^2x}+1=\dfrac{cos^2x+sin^2x}{sin^2x}=\dfrac{1}{sin^2x}\)

Đinh Cẩm Tú
Xem chi tiết
Yeutoanhoc
27 tháng 2 2021 lúc 20:39

`(x/(x+1))^2+(x/(x-1))^2=90(x ne -1,1)`

`<=>x^2/(x+1)^2+x^2/(x-1)^2=90`

`<=>x^2(x-1)^2+x^2(x-1)^2=90(x^2-1)^2`

`<=>x^2(2x^2+2)=90(x^4-2x^2+1)`

`<=>2x^4+2x^2=90x^4-180x^2+90`

`<=>88x^4-182x^2+90=0`

`<=>88x^4-110x^2-72x^2+90=0`

`<=>22x^2(4x^2-5)-18(4x^2-5)=0`

`<=>(4x^2-5)(22x^2-18)=0`

`<=>(4x^2-5)(11x^2-9)=0`

`<=>` $\left[ \begin{array}{l}4x^2=5\\11x^2=9\end{array} \right.$

`<=>` $\left[ \begin{array}{l}x=\sqrt{\dfrac{5}{4}}\\x=-\sqrt{\dfrac{5}{4}}\\x=\sqrt{\dfrac{9}{11}}\\x=-\sqrt{\dfrac{9}{11}}\end{array} \right.$

Vậy `S={\sqrt{9/11},-\sqrt{9/11},\sqrt{5/4},-\sqrt{5/4}}`

Aikatsu
27 tháng 2 2021 lúc 20:47

\(\left(\dfrac{x}{x+1}\right)^2+\left(\dfrac{x}{x-1}\right)^2=90\)

\(\Leftrightarrow\dfrac{x^2}{\left(x+1\right)^2}+\dfrac{x^2}{\left(x-1\right)^2}=90\)

\(\Leftrightarrow\dfrac{x^2\left(x-1\right)^2}{\left(x+1\right)^2\left(x-1\right)^2}+\dfrac{x^2\left(x+1\right)^2}{\left(x+1\right)^2\left(x-1\right)^2}=90\)

\(\Leftrightarrow\dfrac{x^2\left(x-1\right)^2+x^2\left(x+1\right)^2-90\left(x-1\right)^2\left(x+1\right)^2}{\left(x+1\right)^2\left(x-1\right)^2}=0\)

\(\Rightarrow x^2\left(x^2-2x+1\right)+x^2\left(x^2+2x+1\right)-90\left(x^2-1\right)^2=0\)

\(\Leftrightarrow x^4-2x^3+x^2+x^4+2x^3+x^2-90x^4+90x^2-90=0\)

\(\Leftrightarrow-88x^4+92x^2-90=0\)

Nguyễn Việt Lâm
27 tháng 2 2021 lúc 21:13

\(\left(\dfrac{x}{x+1}\right)^2+\left(\dfrac{x}{x-1}\right)^2+\dfrac{2x^2}{x^2-1}-\dfrac{2x^2}{x^2-1}=90\)

\(\Leftrightarrow\left(\dfrac{x}{x+1}+\dfrac{x}{x-1}\right)^2-\dfrac{2x^2}{x^2-1}=90\)

\(\Leftrightarrow\left(\dfrac{2x^2}{x^2-1}\right)^2-\dfrac{2x^2}{x^2-1}-90=0\)

Đặt \(\dfrac{2x^2}{x^2-1}=t\Rightarrow t^2-t-90=0\Rightarrow\left[{}\begin{matrix}t=10\\t=-9\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\dfrac{2x^2}{x^2-1}=10\\\dfrac{2x^2}{x^2-1}=-9\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}4x^2=5\\11x^2=9\end{matrix}\right.\)

\(\Leftrightarrow...\)

Chans
Xem chi tiết
Nguyễn Hoàng Minh
4 tháng 11 2021 lúc 7:01

\(\dfrac{5\left|x+1\right|}{2}=\dfrac{90}{\left|x+1\right|}\left(x\ne-1\right)\\ \Rightarrow5\left|x+1\right|^2=90\cdot2=180\\ \Rightarrow\left|x+1\right|^2=36\\ \Rightarrow\left|x+1\right|=6\left(\left|x+1\right|>0\right)\\ \Rightarrow\left[{}\begin{matrix}x+1=6\\x+1=-6\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=5\\x=-7\end{matrix}\right.\)

Võ Tuấn Kiệt
Xem chi tiết
Nhị Thiên Thiên
Xem chi tiết
Kaori Miyazono
17 tháng 7 2018 lúc 21:05

Ta có \(\left(x-\frac{1}{2}\right)+\left(x-\frac{1}{6}\right)+\left(x-\frac{1}{12}\right)+...+\left(x-\frac{1}{90}\right)=1\)

\(\Rightarrow\left(x+x+x+...+x\right)-\left(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+...+\frac{1}{90}\right)=1\)

\(\Rightarrow9x-\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+....+\frac{1}{9.10}\right)=1\)

\(\Rightarrow9x-\left(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{9}-\frac{1}{10}\right)=1\)

\(\Rightarrow9x-\left(1-\frac{1}{10}\right)=1\)

\(\Rightarrow9x-\frac{9}{10}=1\)

\(\Rightarrow9x=\frac{19}{10}\)

\(\Rightarrow x=\frac{19}{10}\)

Nguyễn Trần Cao Nguyên
Xem chi tiết