Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Hà Mi
Xem chi tiết
Akai Haruma
30 tháng 7 2021 lúc 11:09

Lời giải:
$y'=3x^2-6mx+3(m^2-1)=0$

$\Leftrightarrow x^2-2mx+m^2-1=0$

$\Leftrightarrow x=m+1$ hoặc $x=m-1$

Với $x=m+1$ thì $y=-2m-2$. Ta có điểm cực trị $(m+1, -2m-2)$

Với $x=m-1$ thì $y=2-2m$. Ta có điểm cực trị $m-1, 2-2m$

$f''(m+1)=6>0$ nên $A(m+1, -2m-2)$ là điểm cực tiểu

$f''(m-1)=-6< 0$ nên $B(m-1,2-2m)$ là điểm cực đại 

$BO=\sqrt{2}AO$

$\Leftrightarrow BO^2=2AO^2$

$\Leftrightarrow (m-1)^2+(2-2m)^2=2(m+1)^2+2(-2m-2)^2$

$\Leftrightarrow m=-3\pm 2\sqrt{2}$

 

Hà Mi
Xem chi tiết
nguyễn thanh huyền
Xem chi tiết
Nguyễn Hoàng Minh
17 tháng 11 2021 lúc 22:20

PT giao Ox: \(y=0\Leftrightarrow\left(m-1\right)x=-3m\Leftrightarrow x=\dfrac{3m}{1-m}\Leftrightarrow A\left(\dfrac{3m}{1-m};0\right)\Leftrightarrow OA=\left|\dfrac{3m}{1-m}\right|\)

PT giao Oy: \(x=0\Leftrightarrow y=3m\Leftrightarrow B\left(0;3m\right)\Leftrightarrow OB=\left|3m\right|\)

Gọi H là hình chiếu O lên đths

K/c từ O đến đths đạt max khi OH đạt max

Áp dụng HTL: \(\dfrac{1}{OH^2}=\dfrac{1}{OA^2}+\dfrac{1}{OB^2}\)

\(\Leftrightarrow\dfrac{1}{OH^2}=\dfrac{\left(1-m\right)^2}{9m^2}+\dfrac{1}{9m^2}=\dfrac{m^2-2m+2}{9m^2}\)

Đặt \(\dfrac{1}{OH^2}=t\Leftrightarrow9m^2t=m^2-2m+2\)

\(\Leftrightarrow m^2\left(9t-1\right)+2m-2=0\)

Coi đây là PT bậc 2 ẩn m, PT có nghiệm khi:

\(\Delta=4-4\left(-2\right)\left(9t-1\right)\ge0\\ \Leftrightarrow4+72t-9\ge0\\ \Leftrightarrow t\ge\dfrac{5}{72}\Leftrightarrow\dfrac{1}{OH^2}\ge\dfrac{5}{72}\\ \Leftrightarrow OH^2\le\dfrac{72}{5}\Leftrightarrow OH\le\dfrac{6\sqrt{10}}{5}\)

Dấu \("="\Leftrightarrow\) PT có nghiệm kép

\(\Leftrightarrow m=-\dfrac{b}{2a}=-\dfrac{2}{18t-2}=-\dfrac{2}{18\cdot\dfrac{5}{72}-2}=\dfrac{8}{3}\)

hiền hà
Xem chi tiết
Nguyễn Linh Chi
17 tháng 12 2019 lúc 9:55

Đặt: d: y = ( m+1 ) x + 3

+) TH1: m = -1

=> d: y = 3

=> Khoảng cách của gốc tọa độ tới d là: 3 (1)

+) Th2: m khác -1.

Giao điểm của d với Ox là : A ( \(-\frac{3}{m+1};0\))

=> \(OA=\left|\frac{3}{m+1}\right|\)

Giao điểm của d với Oy là: \(B\left(0;3\right)\)

=> OB = 3.

Kẻ OH vuông với d tại H => AH  là khoảng cách từ O tới d

Xét tam giác OAB vuông tại O. Có OH là đường cao:

=> \(\frac{1}{OH^2}=\frac{1}{OA^2}+\frac{1}{OB^2}=\frac{\left(m+1\right)^2}{9}+\frac{1}{9}>\frac{1}{9}\)vì m khác 1 => \(\left(m+1\right)^2>0\)

=> \(OH< 3\)

=> Khoảng cách từ gốc tọa độ đến d nhỏ hơn 3 (2)

Từ (1); (2) Khoảng cách từ O đến d có giá trị lớn nhất là 3 đạt tại m = -1.

Khách vãng lai đã xóa
Nguyễn Ngọc Quân
16 tháng 10 2020 lúc 21:05

len google bn oi

Khách vãng lai đã xóa
Nguyễn Thành Công
Xem chi tiết
Đĩ Nguyễn Con
Xem chi tiết
Nguyễn Minh Đăng
22 tháng 5 2021 lúc 9:20

Nếu \(2m+2=0\Rightarrow m=-1\Rightarrow y=-2\)

=>  ĐTHS là đường thẳng đi qua (0;-2) và // với trục Ox

=> Khoảng cách từ O đến đths là 2

Nếu \(2m+2\ne0\Rightarrow m\ne-1\)

Khi đó ĐTHS \(y=\left(2m+2\right)x+m-1\) là đường thẳng đi qua điểm \(A\left(\frac{1-m}{2m+2};0\right)\) và \(B\left(0;m-1\right)\)

(ĐTHS bạn tự vẽ nhé)

Kẻ OH vuông góc với AB => OH là khoảng cách từ O đến đths

Tam giác AOB vuông tại O có OH là đường cao ứng với cạnh huyền nên ta có hệ thức sau:

\(\frac{1}{OH^2}=\frac{1}{OA^2}+\frac{1}{OB^2}=\frac{1}{\left(\frac{1-m}{2m+2}\right)^2}+\frac{1}{\left(m-1\right)^2}=\frac{4m^2+8m+5}{m^2-2m+1}\)

\(\Rightarrow OH^2=\frac{m^2-2m+1}{4m^2+8m+5}\)

Đặt \(OH^2=a\ge0\)

\(\Rightarrow4m^2a+8ma+5a=m^2-2m+1\)

\(\Leftrightarrow m^2\left(4a-1\right)+2m\left(4a+1\right)+\left(5a-1\right)=0\)

\(\Delta^'=\left(4a+1\right)^2-\left(4a-1\right)\left(5a-1\right)=16a^2+8a+1-20a^2+9a-1\)

\(=-4a^2+17a=-a\left(4a-17\right)\)

\(\Delta^'\ge0\Leftrightarrow a\left(4a-17\right)\le0\Rightarrow0\le a\le\frac{17}{4}\)

\(\Rightarrow a_{max}=\frac{17}{4}\Rightarrow OH^2=\frac{17}{4}\Rightarrow OH=\frac{\sqrt{17}}{2}\)

Dấu "=" xảy ra khi: \(\frac{m^2-2m+1}{4m^2+8m+5}=\frac{17}{4}\Leftrightarrow4m^2-8m+4=68m^2+136m+85\)

\(\Leftrightarrow64m^2+144m+81=0\Leftrightarrow\left(8m+9\right)^2=0\Rightarrow m=-\frac{9}{8}\)

Vậy khoảng cách lớn nhất từ O đến đths là \(\frac{\sqrt{17}}{2}\) khi \(m=-\frac{9}{8}\)

Khách vãng lai đã xóa
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
19 tháng 1 2019 lúc 2:39

Chọn C

Ta có  y ' = 3 x 2 - 6 m x + 3 ( m 2 - 1 )

Hàm số (1) có cực trị thì PT y ' = 0  có 2 nghiệm phân biệt

⇔ x 2 - 2 m x + m 2 - 1 = 0  có 2 nhiệm phân biệt

Khi đó, điểm cực đại A ( m - 1 ; 2 - 2 m ) và điểm cực tiểu  B ( m + 1 ; - 2 m )

Ta có  O A = 2 O B ⇔ m 2 + 6 m + 1 = 0

 

 

Phạm Thị Bích Thạch
Xem chi tiết
Thu Hiền
26 tháng 3 2016 lúc 9:23

Ta có : \(y'=3x^2-6mx+3\left(m^2-1\right)\)

Để hàm số có cực trị thì phương trình \(y'=0\) có 2 nghiệm phân biệt

                                                             \(\Leftrightarrow x^2-2mx+m^2-1=0\) có 2 nghiệm phân biệt

                                                             \(\Leftrightarrow\Delta=1>0\) với mọi m

Cực đại của đồ thị hàm số là A(m-1;2-2m) và cực tiểu của đồ thị hàm số là B (m+1; -2-2m)

Theo giả thiết ta có :

                         \(OA=\sqrt{2}OB\Leftrightarrow m^2+6m+1\Leftrightarrow\begin{cases}m=-3+2\sqrt{2}\\m=-3-2\sqrt{2}\end{cases}\)

Vậy có 2 giá trị m là \(\begin{cases}m=-3+2\sqrt{2}\\m=-3-2\sqrt{2}\end{cases}\)

nguyễn thị nguyệt
Xem chi tiết