Cho xy+yz+xz=0
Tính P= \(\frac{yz}{x^2}+\frac{xz}{y^2}+\frac{xy}{z^2}\)
\(\frac{xy}{x^2+yz+xz}+\frac{yz}{y^2+xy+xz}+\frac{xz}{z^2+xy+yz}\le\frac{x^2+y^2+z^2}{xy+yz+xz}\)
cm biết x y z >0
#)Góp ý :
Mời bạn tham khảo :
http://diendantoanhoc.net/topic/160455-%C4%91%E1%BB%81-to%C3%A1n-v%C3%B2ng-2-tuy%E1%BB%83n-sinh-10-chuy%C3%AAn-b%C3%ACnh-thu%E1%BA%ADn-2016-2017/
Mình sẽ gửi link này về chat riêng cho bạn !
Tham khảo qua đây nè :
http://diendantoanhoc.net/topic/160455-%C4%91%E1%BB%81-to%C3%A1n-v%C3%B2ng-2-tuy%E1%BB%83n-sinh-10-chuy%C3%Ân-b%C3%ACnh-thu%E1%BA%ADn-2016-2017
tk cho mk nhé
Cho các số dương x, y, z. CMR:
\(\frac{xy}{x^2+yz+xz}+\frac{yz}{y^2+xy+xz}+\frac{xz}{z^2+yz+xy}\le\frac{x^2+y^2+z^2}{xy+yz+xz}\)
Bunhiacopxki: \(\left(x^2+yz+zx\right)\left(y^2+yz+zx\right)\ge\left(xy+yz+zx\right)^2\)
\(\Rightarrow\frac{xy}{x^2+yz+zx}\le\frac{xy\left(y^2+yz+zx\right)}{\left(xy+yz+zx\right)^2}\)
Thiết lập tương tự và cộng lại:
\(\Rightarrow VT\le\frac{xy\left(y^2+yz+zx\right)+yz\left(z^2+xy+zx\right)+zx\left(x^2+yz+xy\right)}{\left(xy+yz+zx\right)^2}\)
\(VT\le\frac{xy^3+xy^2z+x^2yz+yz^3+xy^2z+xyz^2+x^3z+xyz^2+x^2yz}{\left(xy+yz+zx\right)^2}\)
Ta chỉ cần chứng minh: \(\frac{xy^3+xy^2z+x^2yz+yz^3+xy^2z+xyz^2+x^3z+xyz^2+x^2yz}{\left(xy+yz+zx\right)^2}\le\frac{x^2+y^2+z^2}{xy+yz+zx}\)
\(\Leftrightarrow xy^3+xy^2z+x^2yz+yz^3+xy^2z+xyz^2+x^3z+xyz^2+x^2yz\le\left(x^2+y^2+z^2\right)\left(xy+yz+zx\right)\)
\(\Leftrightarrow x^2yz+xy^2z+xyz^2\le x^3y+y^3z+z^3x\)
\(\Leftrightarrow\frac{x^2}{z}+\frac{y^2}{x}+\frac{z^2}{y}\ge x+y+z\) (đúng theo Cauchy-Schwarz)
Dấu "=" xảy ra khi \(x=y=z\)
Cho các số dương x,y,z . Chứng minh rằng:
\(\frac{xy}{x^2+yz+xz}+\frac{yz}{y^2+xy+xz}+\frac{xz}{z^2+yz+xy}\le\frac{x^2+y^2+z^2}{xy+yz+xz}\)
http://diendantoanhoc.net/topic/160455-%C4%91%E1%BB%81-to%C3%A1n-v%C3%B2ng-2-tuy%E1%BB%83n-sinh-10-chuy%C3%AAn-b%C3%ACnh-thu%E1%BA%ADn-2016-2017/
Cho các số dương x, y, z. CMR:
\(\frac{xy}{x^2+yz+xz}+\frac{yz}{y^2+xy+xz}+\frac{xz}{z^2+xz+xy}\ge\frac{x^2+y^2+z^2}{xy+yz+xz}\)
BĐT của bạn bị ngược dấu, mà có vẻ các mẫu số cũng ko đúng (để ý mẫu số thứ 2 và thứ 3 đều có chung xy+xz ko hợp lý)
Cho các số dương x,y,z .Chứng minh rằng:
\(\frac{xy}{x^2+yz+xz}+\frac{yz}{y^2+xy+xz}+\frac{xz}{z^2+yz+xy}\le\frac{x^2+y^2+z^2}{xy+yz+xz}\)
Trích: đề ms thi , thánh nào lớp 9 giúp dùm =="
bài này tao nhớ là đã từng xem qua nhưng h ko nhớ cho rõ nx
Cho xy+xz+yz =0 và xyz \(\ne\)0 Tính M= \(\frac{yz}{x^2}+\frac{xz}{y^2}+\frac{xy}{z^2}\)
làm tương tự bài này nha
x + y + z = 3. Tìm Max P = xy + yz + xz
Ta có: (x - y)² ≥ 0 <=> x² - 2xy + y² ≥ 0 <=> x² + y² ≥ 2xy
hay 2xy ≤ x² + y² , dấu " = " xảy ra <=> x = y
tương tự:
+) 2yz ≤ y² + z² +) 2xz ≤ x² + z²
cộng 3 vế của 3 bđt trên
--> 2xy + 2yz + 2xz ≤ 2(x² + y² + z²)
--> xy + yz + xz ≤ x² + y² + z²
--> xy + yz + xz + 2xy + 2yz + 2xz ≤ x² + y² + z² + 2xy + 2yz + 2xz
--> 3(xy + yz + xz) ≤ (x + y + z)²
--> 3(xy + yz + xz) ≤ 3²
--> xy + yz + xz ≤ 3
Theo đề ta có :
xy + yz + xz = 0
\(\Rightarrow xy=0-yz-xz=-\left(yz+xz\right)\) (1)
\(\Rightarrow yz=0-xz-xy=-\left(xz+xy\right)\)(2)
\(\Rightarrow xz=0-xy-yz=-\left(xy+yz\right)\)(3)
\(M=\frac{yz}{x^2}+\frac{xz}{y^2}+\frac{xy}{z^2}\)
Từ (1) ; (2) và (3) , ta có :
\(M=\frac{-\left(xy+xz\right)}{x^2}+\frac{-\left(xy+yz\right)}{y^2}+\frac{-\left(yz+xz\right)}{z^2}\)
\(M=\frac{-x\left(y+z\right)}{x^2}+\frac{-y\left(x+z\right)}{y^2}+\frac{-z\left(x+y\right)}{z^2}\)
\(M=\frac{-\left(y+z\right)}{x}+\frac{-\left(x+z\right)}{y}+\frac{-\left(x+y\right)}{z}\)
\(M-3=\left(\frac{-\left(y+z\right)}{x}-1\right)+\left(\frac{-\left(x+z\right)}{y}-1\right)+\left(\frac{-\left(x+y\right)}{z}-1\right)\)
\(M-3=\left(\frac{-y-z}{x}-\frac{x}{x}\right)+\left(\frac{-x-z}{y}-\frac{y}{y}\right)+\left(\frac{-x-y}{z}-\frac{z}{z}\right)\)
\(M-3=\left(\frac{-y-z-x}{x}\right)+\left(\frac{-x-z-y}{y}\right)+\left(\frac{-x-y-z}{z}\right)\)
\(M-3=\frac{-\left(y+z+x\right)}{x}+\frac{-\left(x+z+y\right)}{y}+\frac{-\left(x+y+z\right)}{z}\)
..............
\(\frac{xy+xz+yz}{xyz}=0\Rightarrow\frac{1}{z}+\frac{1}{y}+\frac{1}{x}=0\)
voi a+b+c=0 thi \(a^3+b^3+c^3=3abc\)
that vay \(a^3+b^3+c^3-3abc=\left(a+b\right)^3+c^3-3ab\left(a+b\right)-3abc\)
=\(\left(a+b+c\right)\left(\left(a+b\right)^2-\left(a+b\right)c+c^2\right)-3ab\left(a+b+c\right)\)
=0
ap dung ta cung co \(\frac{1}{x^3}+\frac{1}{y^3}+\frac{1}{z^3}=3\left(\frac{1}{x}.\frac{1}{y}.\frac{1}{z}\right)=\frac{3}{xyz}\)
M=\(\frac{xyz}{x^3}+\frac{xyz}{y^3}+\frac{xyz}{z^3}=xyz\left(\frac{1}{x^3}+\frac{1}{y^3}+\frac{1}{z^3}\right)=0\)
Cho x,y,z là các số thực khác 0 thỏa mãn: xy+ yz+ xz=0.
Tính giá trị biểu thức:
M=\(\frac{yz}{x^2}+\frac{xz}{y^2}+\frac{xy}{z^2}\)
\(M=\frac{yz}{x^2}+\frac{xz}{y^2}+\frac{xy}{z^2}=\frac{y^3z^3+x^3z^3+x^3y^3}{x^2y^2z^2}=\frac{\left(yz+xz\right)^3+x^3y^3-3xy^2z^3-3x^2yz^3}{x^2y^2z^2}\)
\(=\frac{\left(yz+xz+xy\right)\left[\left(yz+xz\right)^2+xy\left(yz+xz\right)+x^2y^2\right]-3xyz^2\left(xz+yz\right)}{x^2y^2z^2}\)
\(=\frac{0.\left[\left(yz+xz\right)^2+xy\left(yz+xz\right)+x^2y^2\right]-3xyz^2\left(xz+yz\right)}{x^2y^2z^2}\)
\(=\frac{-3xyz^2\left(xz+yz\right)}{x^2y^2z^2}=\frac{-3\left(xz+yz\right)}{xy}=\frac{-3.\left(-xy\right)}{xy}=3\)
Cho x,y,z > 0. Tìm GTLN của: \(A=\frac{\sqrt{yz}}{x+2\sqrt{yz}}+\frac{\sqrt{xz}}{y+2\sqrt{xz}}+\frac{\sqrt{xy}}{z+2\sqrt{xy}}\)
Cho x.y,z>0.Tìm Max A=\(\frac{\sqrt{yz}}{x+2\sqrt{yz}}+\frac{\sqrt{xz}}{y+2\sqrt{xz}}+\frac{\sqrt{xy}}{z+2\sqrt{xy}}\)