Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Gia Hân
Xem chi tiết
Phương
Xem chi tiết
Nguyễn Thị Tuyết Trâm
14 tháng 7 2016 lúc 9:53

cho tam giác abc vuông ở a, đường cao ah.biết bh:ch=1:3, ah=12cm. tính bc

Nguyễn Thị Tuyết Trâm
14 tháng 7 2016 lúc 9:54

mình gửi lộn  xl

Nguyễn Quân
Xem chi tiết
Nguyễn Lê Phước Thịnh
17 tháng 8 2023 lúc 19:32

3:

góc C=90-50=40 độ

Xét ΔABC vuông tại A có sin C=AB/BC

=>4/BC=sin40

=>\(BC\simeq6,22\left(cm\right)\)

\(AC=\sqrt{BC^2-AB^2}\simeq4,76\left(cm\right)\)

1:

góc C=90-60=30 độ

Xét ΔABC vuông tại A có

sin B=AC/BC

=>3/BC=sin60

=>\(BC=\dfrac{3}{sin60}=2\sqrt{3}\left(cm\right)\)

=>\(AB=\dfrac{2\sqrt{3}}{2}=\sqrt{3}\left(cm\right)\)

Nguyễn Hồng Nhung
Xem chi tiết
Đỗ Thanh Hải
1 tháng 3 2021 lúc 18:45

a) Xét tam giác ABD và KBD có :

\(\widehat{BAD}=\widehat{BKD}=90^o\)

BD chung

\(\widehat{ABD}=\widehat{KBD}\left(gt\right)\)

=> tam giác ABD = tam giác KBD (ch-gn)

b) Tam giác ABD = tam giác KBD => AB = KB (2 cạnh tương ứng)

c) tam giác ABD = tam giác KBD => AD = KD (2 cạnh tương ứng)

Xét tam giác ADH và tam giác KDC có 

\(\widehat{ADH}=\widehat{KDC}\)(đối đỉnh)

AD = KD(cmt)

\(\widehat{DAH}=\widehat{DKC}=90^o\)

=> tam giác ADH = tam giác KDC (g.c.g)

=> DH = DC (2 cạnh tg ứng)

=> tam giác DCH cân tại D

=> \(\widehat{DCH}=\widehat{DHC}\)

Đức Hiếu
1 tháng 3 2021 lúc 18:45

a, Xét tam giác ABD vuông tại A và tam giác KBD vuông tại K ta có: 

BD: cạnh chung; \(\widehat{ABD}=\widehat{KBD}\)

Do đó \(\Delta ABD=\Delta KBD\) 

b, Vì  \(\Delta ABD=\Delta KBD\) nên $AB=KB;AD=KD$ 

c, Xét tam giác ADH vuông tại A và tam giác KDC vuông tại K ta có: 

$AD=KD(cmt)$;\(\widehat{ADH}=\widehat{KDC}\)(dd)

Do đó \(\Delta ADH=\Delta KDC\)

Hay DH=DC. Suy ra \(\widehat{DHC}=\widehat{DCH}\)

Bà HOÀng Thả ThÍnh
Xem chi tiết
Dương Mạnh Quyết
21 tháng 12 2021 lúc 10:21

bài 2:

ta có: AB<AC<BC(Vì 3cm<4cm<5cm)

=> góc C>góc A> góc B (Các cạnh và góc đồi diện trong tam giác)

Bài 3:

*Xét tam giác ABC, có:

       góc A+góc B+góc c= 180 độ( tổng 3 góc 1 tam giác)

hay góc A+60 độ +40 độ=180độ

  => góc A= 180 độ-60 độ-40 độ.

  => góc A=80 độ

Ta có: góc A>góc B>góc C(vì 80 độ>60 độ>40 độ)

        => BC>AC>AB( Các cạnh và góc đối diện trong tam giác)

Khách vãng lai đã xóa
Lưu Nguyễn Hà An
15 tháng 2 2022 lúc 9:04

bài 2:

ta có: AB <AC <BC (Vì 3cm <4cm <5cm)

=> góc C>góc A> góc B (Các cạnh và góc đồi diện trong tam giác)

Bài 3:

*Xét tam giác ABC, có:

       góc A+góc B+góc c= 180 độ( tổng 3 góc 1 tam giác)

hay góc A+60 độ +40 độ=180độ

  => góc A= 180 độ-60 độ-40 độ.

  => góc A=80 độ

Ta có: góc A>góc B>góc C(vì 80 độ>60 độ>40 độ)

        => BC>AC>AB( Các cạnh và góc đối diện trong tam giác)

HT mik làm giống bạn Dương Mạnh Quyết

Trần Thị Thu Mến
31 tháng 10 lúc 18:47

ta có: AB<AC<BC(Vì 3cm<4cm<5cm)

 

=> góc C>góc A> góc B (Các cạnh và góc đồi diện trong tam giác)

 

Bài 3:

 

*Xét tam giác ABC, có:

 

       góc A+góc B+góc c= 180 độ( tổng 3 góc 1 tam giác)

 

hay góc A+60 độ +40 độ=180độ

 

  => góc A= 180 độ-60 độ-40 độ.

 

  => góc A=80 độ

 

Ta có: góc A>góc B>góc C(vì 80 độ>60 độ>40 độ)

 

        => BC>AC>AB( Các cạnh và góc đối diện trong tam giác)

Cường Hoàng
Xem chi tiết
vĩnh thuần
Xem chi tiết
Nguyễn Thị Hồng Anh
11 tháng 3 2019 lúc 20:42

a) Ta có: góc A + góc B + góc C = 180 độ ( tổng 3 góc trong tam giác)

               90 độ + 60 độ + góc C = 180 độ

                                          góc C = 180 độ - (90 độ + 60 độ)

                                           góc C = 30 độ

Xét tam giác ABC có:

góc A > góc B > góc C

(90 độ > 60 độ > 30 độ)

-> BC>CA>AB

(quan hệ giữa cạnh và góc đối diện)                         

Không
Xem chi tiết
Nguyễn Lê Phước Thịnh
30 tháng 6 2021 lúc 19:37

a) Ta có: ΔABC vuông tại A(gt)

nên \(\widehat{ABC}+\widehat{ACB}=90^0\)(hai góc nhọn phụ nhau)

\(\Leftrightarrow\widehat{ACB}+60^0=90^0\)

hay \(\widehat{ACB}=30^0\)(1)

Xét ΔABC có \(\widehat{ACB}< \widehat{ABC}< \widehat{BAC}\left(30^0< 60^0< 90^0\right)\)

nên AB<AC<BC

b) Xét ΔABD vuông tại A và ΔKBD vuông tại K có 

BD chung

\(\widehat{ABD}=\widehat{KBD}\)(BD là tia phân giác của \(\widehat{ABK}\))

Do đó: ΔABD=ΔKBD(cạnh huyền-góc nhọn)

c) Ta có: BD là tia phân giác của \(\widehat{ABC}\)(gt)

nên \(\widehat{ABD}=\widehat{DBC}=\dfrac{\widehat{ABC}}{2}=\dfrac{60^0}{2}=30^0\)(2)

Từ (1) và (2) suy ra \(\widehat{DBC}=\widehat{DCB}\)

Xét ΔDBC có \(\widehat{DBC}=\widehat{DCB}\)(cmt)

nên ΔDBC cân tại D(Định lí đảo của tam giác cân)

Xét ΔBDK vuông tại K và ΔCDK vuông tại K có 

DB=DC(ΔDBC cân tại D)

DK chung

Do đó: ΔBDK=ΔCDK(Cạnh huyền-cạnh góc vuông)

Suy ra: BK=CK(hai cạnh tương ứng)

hay K là trung điểm của BC(Đpcm)

Lê Ngọc Bảo Trân
Xem chi tiết
Ninh Thị Trà My
9 tháng 11 2023 lúc 22:44

\(\left[{}\begin{matrix}\\\\\\\end{matrix}\right.\prod\limits^{ }_{ }\int_{ }^{ }dx\sinh_{ }^{ }⋮\begin{matrix}&&&\\&&&\\&&&\\&&&\\&&&\\&&&\end{matrix}\right.\Cap\begin{matrix}&&\\&&\\&&\\&&\\&&\\&&\end{matrix}\right.\)