Cho tam giác ABC vuông tại A có góc B = 60 độ cạnh AB = 5 cm , tia phân giác của B cắt AC tại D. Kẻ DE vuông góc với BC(tại E)
a) Chứng minh tam giác ABD bằng tam giác EBD
b) Chứng minh tam giác ABE là tam giác đều
c) Tính độ dài BC
cho tam giác ABC vuông tại A có AB = 6, AC = 8. Tia phân giác góc ABC cắt AC tại D, từ C kẻ CE vuông góc với BD. EH là đường cao của tam giác EBC. CMR :
a, Tính BC và tỉ số AD trên DC
b, Tam giác ABD ~ tam giác EBC
c, CD/BC = CE/BE
d, CH.CB=ED.EB
cho tam giác abc vuông tại a có ab>ac m là điểm tùy ý trên bc. Qua m kẻ mx vuông góc bc và cắt ab tại i cắt ca tại d
cmr: tam giác abc đồng dạng với tam giác mdc
cmr: bi.ba=bm.bc
cmr: tam giác iam đồng dạng với tam giác idm
cho góc acb= 60 độ và diện tích tam giác cdb là 60 cm vuông . tính diện tích tam giác cma
Cho tam giác ABC vuông tại A, góc ABC = 60 độ. Tia phân giác góc B cắt AC tại E. Từ E vẽ EH vuông góc với BC (H thuộc BC)
a, Chứng minh tam giác ABE = tam giác HBE
b, Qua H vẽ HK // BE (K thuộc AC) Chứng minh AK//CF
c, HE cắt BA tại M, MC cắt BE tại N. Chứng minh NM = NC
3. CHO TAM GIÁC ABC VUÔNG TẠI A CÓ AB= 6 CM, AC= 8 CM. GỌI AM LÀ ĐƯỜNG TRUNG TUYẾN CỦA TAM GIÁC
A/ TÍNH ĐỘ DÀI BC, AM
B/ KẺ MD VUÔNG GÓC AB, ME VUÔNG GÓC AC. TỨ GIÁC ADME LÀ HÌNH GÌ, VÌ SAO/
C/ TAM GIÁC ABC CÓ THÊM ĐIỀU KIỆN GÌ THÌ TỨ GIÁC ADME LÀ HÌNH VUÔNG
Cho tam giác ABC vuông tại A(AB<AC).Trên cạnh AC lấy điểm E, từ E kẻ đường thẳng vuông góc với BC tại D, đường thẳng này cắt tia BA tại F.
a, Cmr: tam giác ABC đồng dạng tam giác DBF và BA*BF=BD*BC
b,Cmr: tam giác ABD đồng dạng tam giác CBF
c, Giả sử góc ABC= 60 độ.Cmr: Diện tích tam giác ABD=1/4 diện tích tam giác CBF
Cho tam giác ABC có góc A tù. M là trung điểm BC, kẻ MD vuông góc AC tại D, AE vuông góc AC tại A, E thuộc BC. Tính diện tích tam giác ABC biết diện tích tam giác CDE = 52.5m^2
Cho tam giác ABC vuông tại A(AB<AC) có AH là đường cao
1)CMR: Tam giác ABC đồng dạng với tam giác HAC và AC^2=CH.CB
2) Đường thẳng vuông góc với BC tại C cắt tia BA tạị M vẽ AI vuông góc với CM tại I.CMR tam giác CHI đồng dạng với tam giác CMB
Cho tam giác ABC vuông tại B ( góc A=60 độ). Gọi E, F lần lượt là trung điểm của BC và AC. Đường phân giác AD của tam giác ABC (D thuộc BC) cắt đường thẳng EF tại M.
a) CM: tam giác ABD đồng dạng tam giác MED
b, CM: tam giác BDF đồng dạng tam giác AFM
c, CM: DC.ME=DE.AC
d, CM: Sabc=Sabmf
#Toán lớp 8