CM BĐT trên với abc + a + b = 3ab
cm BĐT :
a2+5b2-(3a+b)\(\ge\)3ab-5
\(a^2+5b^2-\left(3a+b\right)\ge3ab-5\)
\(\Leftrightarrow2a^2+10b^2-2\left(3a+b\right)\ge6ab-10\)
\(\Leftrightarrow2a^2+10b^2-6a-2b-6ab+10\ge0\)
\(\Leftrightarrow\left(a^2-6a+9\right)+\left(b^2-2b+1\right)+\left(a^2-6ab+9b^2\right)\ge0\)
\(\Leftrightarrow\left(a-3\right)^2+\left(b-1\right)^2+\left(a-3b\right)^2\ge0\)
\(\Leftrightarrowđcpm\)
Chứng minh nếu a+b<0 thì ít nhất 1 trong 2 BĐT sau sai a^3+3a^2b>=0,b^3+3ab^2>=0
4a2-12a+1 > hoặc bằng -8
CM bđt trên với mọi a
<=>(2a)^2-2.2a.3+9>=0
<=>(2a-3)^2>=0
dấu "=" xảy ra <=>2a-3=0
<=>2a=3
<=>a=2/3
vậy 4a^2-12a+1>=8 dấu "=" xảy ra <=>a=2/3
Ta có: \(4a^2-12a+1\)
\(=4a^2-2.2a.3+9-8\)
\(=\left(4a^2-2.2a.3+9\right)-8\)
\(=\left(2a-3\right)^2-8\)
Mà \(\left(2a-3\right)^2\ge0\)
\(\Rightarrow\left(2a-2\right)^2-8\ge-8\left(ĐPCM\right)\)
Cho tam giác ABC. M là trung điểm AC. Trên tia đối của tia MB lấy điểm D sao cho BM = MD. a/Chứng minh : AB // CD b/vẽ dường từ D vuông góc với BD cát AC tại E. CM AE=3AB
Cho tam giác đều ABC cạnh a,M là trung điểm của BC.Trên cạnh AB lấy điểm D,trên cạnh AC lấy điểm E sao cho góc DME=60*
a, CM: tam giác BDC~ABC
b, Vẽ AE vuông góc với BD tại E. Tính AD, DE, AE
c,Chứng minh: a^3+b^3=3ab
Chứng minh bđt Cô-si với 3 số ko âm a,b,c:
(a+b+c)/3 \(\ge\)3(căn abc)
dùng nhiều rồi mà ko biết cm sao , m.n giúp....
\(\frac{a+b+c}{3}\ge\sqrt[3]{abc}\)
\(\Leftrightarrow a+b+c-3\sqrt[3]{abc}\ge0\)
\(\Leftrightarrow\left(\sqrt[3]{a}+\sqrt[3]{b}\right)^3+c-3\sqrt[3]{ab}\left(\sqrt[3]{a}+\sqrt[3]{b}\right)-3\sqrt[3]{abc}\ge0\)
\(\Leftrightarrow\left(\sqrt[3]{a}+\sqrt[3]{b}+\sqrt[3]{c}\right)\left(\sqrt[3]{a^2}+\sqrt[3]{b^2}+\sqrt[3]{c^2}-\sqrt[3]{ab}-\sqrt[3]{bc}-\sqrt[3]{ac}\right)\ge0\)
Mà ta có \(\hept{\begin{cases}\left(\sqrt[3]{a}+\sqrt[3]{b}+\sqrt[3]{c}\right)\ge0\\\left(\sqrt[3]{a^2}+\sqrt[3]{b^2}+\sqrt[3]{c^2}-\sqrt[3]{ab}-\sqrt[3]{bc}-\sqrt[3]{ac}\right)\ge0\end{cases}}\)nên cái BĐT là đúng
Áp dụng BĐT trên , ta được : \(\frac{a+b+c+d}{2}=\frac{a+b}{2}+\frac{c+d}{2}\ge2\sqrt{\frac{\left(a+b\right)}{2}.\frac{\left(c+d\right)}{2}}\ge2\sqrt{\sqrt{ab}.\sqrt{cd}}=2\sqrt[4]{abcd}\)
\(\Leftrightarrow\frac{a+b+c+d}{4}\ge\sqrt[4]{abcd}\) (*)
Đặt \(d=\frac{a+b+c}{3}\) thì \(a+b+c=3d\) (**)Từ (*) và (**) ta có : \(\frac{3d+d}{4}\ge\sqrt[4]{abcd}\Leftrightarrow d\ge\sqrt[4]{abcd}\Leftrightarrow d^4\ge abcd\Leftrightarrow d^3\ge abc\Leftrightarrow d\ge\sqrt[3]{abc}\)
hay \(\frac{a+b+c}{3}\ge\sqrt[3]{abc}\) (đpcm)
Bạn tự xét dấu đẳng thức nhé!
cm BĐT x3+y3+z3>=3xyz bằng cách phân tích đa thức thành nhân tử sau đó chứng minh tích đó lớn hơn 0
đặt căn bậc 3 của a =x , căn bậc 3 của b = y , căn bậc ba của c=z
ta có a+b+c>=ba căn bậc ba của abc
CM BĐT :
\(\sqrt[3]{abc}+\sqrt[3]{xyz}\le\sqrt[3]{\left(a+x\right)\left(b+y\right)\left(c+z\right)}\) ( với a ; b; c; x ; y ; z dương )
CM BĐT: \(\dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b}\ge\dfrac{3}{2}\) với \(a,b,c>0\)
\(VT=\left(\dfrac{a}{b+c}+1\right)+\left(\dfrac{b}{c+a}+1\right)+\left(\dfrac{c}{a+b}+1\right)-3\)
\(=\dfrac{1}{2}\left(a+b\right)\left(b+c\right)\left(a+c\right)\left(\dfrac{1}{b+c}+\dfrac{1}{a+c}+\dfrac{1}{a+b}\right)-3>=\dfrac{9}{2}-3=\dfrac{3}{2}\)
\(\frac{b+c}{\sqrt{a}}+\frac{a+c}{\sqrt{b}}+\frac{a+b}{\sqrt{c}}\ge\sqrt{a}+\sqrt{b}+\sqrt{c}+3\)
cm bđt bs abc=1
a;b;c dương
\(A=\frac{b}{\sqrt{a}}+\frac{c}{\sqrt{b}}+\frac{a}{\sqrt{c}}+\frac{c}{\sqrt{a}}+\frac{a}{\sqrt{b}}+\frac{b}{\sqrt{c}}\)
\(\Rightarrow A\ge\frac{\left(\sqrt{b}+\sqrt{c}+\sqrt{a}\right)^2}{\sqrt{a}+\sqrt{b}+\sqrt{c}}+\frac{\left(\sqrt{c}+\sqrt{a}+\sqrt{b}\right)^2}{\sqrt{a}+\sqrt{b}+\sqrt{c}}=2\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)\)
\(\Rightarrow A\ge\sqrt{a}+\sqrt{b}+\sqrt{c}+\sqrt{a}+\sqrt{b}+\sqrt{c}\ge\sqrt{a}+\sqrt{b}+\sqrt{c}+3\sqrt[3]{\sqrt{abc}}=\sqrt{a}+\sqrt{b}+\sqrt{c}+3\)
Dấu "=" xảy ra khi \(a=b=c=1\)
\( {1 \over a} + {1 \over b} +{1 \over c}>={9 \over a+b+c}\)
cm bđt trên.