Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Quoc Tran Anh Le
Xem chi tiết
Hà Quang Minh
21 tháng 9 2023 lúc 0:29

a) Vì tam giác ABC cân tại A

\( \Rightarrow \widehat B = \widehat C \Rightarrow \dfrac{1}{2}\widehat B = \dfrac{1}{2}\widehat C \Rightarrow \widehat {ABF} = \widehat {ACE}\)

b) Xét \(\Delta ECA\) và \(\Delta FBA\)có:

\(\widehat{A}\) chung

AB = AC

\(\widehat {ABF} = \widehat {ACE}\)

\( \Rightarrow \)\(\Delta ECA\)= \(\Delta FBA\)( g – c – g )

\( \Rightarrow AE = AF và EC = BF\) (2 cạnh tương ứng)

\( \Rightarrow \Delta AEF\) cân tại A

c) Xét tam giác IBC có :

\(\widehat B = \widehat C \Rightarrow \dfrac{1}{2}\widehat B = \dfrac{1}{2}\widehat C \Rightarrow \widehat {ICB} = \widehat {IBC}\)

Do đó, tam giác IBC cân tại I ( 2 góc ở đáy bằng nhau )

\( \Rightarrow IB = IC\)( cạnh tương ứng )

Vì EC = BF ( câu b) và IB = IC

\( \Rightarrow \) EC – IC = BF – BI

\( \Rightarrow \) EI = FI

\( \Rightarrow \Delta IEF\) cân tại I

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
4 tháng 7 2019 lúc 4:51

Chứng minh được tam giác ADB = tam giác AEC (g-c-g) => AD = AE, từ đó tam giác ADE cân tại A.

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
16 tháng 2 2017 lúc 11:15

Nguyễn Phương Quyên
Xem chi tiết
Đạt Phan
Xem chi tiết
Thanh Hoàng Thanh
27 tháng 1 2021 lúc 6:23

a.TG ABC cân tại A gt

=> ^B = ^C tính chất tg cân

Mà ^ECB=^ACE=1/2^C ( CE là pg ^C)

     ^DBC=^ABD=1/2^B ( BD là pg ^B)

=> ^ECB=^ACE =^DBC=^ABD

Xét tg BEC và tg CDB có:

^ECB = ^DBC(cmt)

BC chung

^B=^C (tg ABC cân tại A)

 =>tg BEC = tg CDB(g-c-g)

b. Xét tg ABD và tg ACE có

^A chung

AB = AC (tg ABC cân tại A)

^ABD=^ACE(cmt)

=>tg ABD = tg ACE(g-c-g)

=>AD=AE (cctu)

=> tg ADE là tg cân

 

Quoc Tran Anh Le
Xem chi tiết
Kiều Sơn Tùng
17 tháng 9 2023 lúc 21:32

\(\widehat A = 120^\circ \)nên \(\widehat {DAE} = 60^\circ \)(AD là phân giác của góc A).

Ta có: DE // AB nên  \(\widehat {CED} = \widehat {EAB} = 120^\circ \)(hai góc đồng vị). Ba điểm A, E, C thẳng hàng nên góc AEC bằng 180° 

\(\Rightarrow \widehat {AED} = 180^\circ  - \widehat {CED} = 180^\circ  - 120^\circ  = 60^\circ \)

Tam giác ADE có \(\widehat {EAD} = \widehat {ADE}\) (\(=60^0\)) nên là tam giác cân.

Mà \(\widehat {DEA} = 60^\circ \)

Do đó, tam giác ADE đều ( tam giác cân có 1 góc bằng \(60^0\)).

Nguyễn Nhàn
Xem chi tiết
tíntiếnngân
20 tháng 5 2019 lúc 14:01

a) Xét 2 tam giác BME và tam giác AHC 

có \(\widehat{BME}=\widehat{AHC}=90^0\)

\(\widehat{ABC}chung\)

nên 2 tam giác BME và tam giác AHC đồng dạng với nhau

b)

xét tam giác ABH

có AE là phân giác của góc BAH

nên \(\widehat{MAE}=\widehat{HAE}\)

có \(\widehat{MAE}+\widehat{CAE}=90^0\)

\(\widehat{HAE}+\widehat{CEA}=90^0\)

suy ra \(\widehat{CAE}=\widehat{CEA}\)do đó tam giác AEc cân tại C

c)

xét tam giác AHC có 

AD là tia phân giác của góc HAC

nên \(\frac{HD}{CD}=\frac{AH}{AC}\Rightarrow AH\cdot CD=DH\cdot AC\)

lại có AC = EC

nên \(AH\cdot CD=EC\cdot AC\)

d)

chứng minh tương tự câu b

ta có tam giác ABD cân tại B

suy ra AB = BD

mà AC = EC

nên AB + AC  = BD + EC = BD + CD + ED = BC + DE

Mizu Yuki
Xem chi tiết
Trần Lạc Băng
Xem chi tiết