Rut gon
(5x3y2-4x2y3):2x2y2+(3x4y+6xy).3xy-x.(x2-\(\frac{1}{2}\))
1) Rut gon cac bieu thuc sau :
a) (x-3)(x2+3x+ 9)-(54+x3)
b) (3x+y)(9x2-3xy +y2)-(3x-y)(9x2+3xy+y2)
2, Dien cac don thuc thich hop vao cho trong
a, (x+3y) (... - ... + ...) = x^3 +27y^3
b, (2x- ....) (... + 6xy + ... +...) = 8x^3 - 27y^3
\(1.\)
\(a.\)
\(\left(x-3\right)\left(x^2+3x+9\right)-\left(54+x^3\right)\)
\(=\left(x^3-3^3\right)-\left(54+x^3\right)\)
\(=x^3-27-54-x^3\)
\(=-81\)
\(b.\)
\(\left(3x+y\right)\left(9x^2-3xy+y^2\right)-\left(3x-y\right)\left(9x^2+3xy+y^2\right)\)
\(=\left(27x^3+y^3\right)-\left(27x^3-y^3\right)\)
\(=27x^3+y^3-27x^3+y^3\)
\(=2y^3\)
\(2.\)
\(a.\)
\(\left(x+3y\right)\left(x^2-3xy+9y^2\right)=x^3+27y^3\)
\(b.\)
\(\left(2x-3y\right)\left(4x^2+6xy+9y^3\right)=8x^3-27y^3\)
1) a) \(\left(x-3\right)\left(x^2+3x+9\right)-\left(54+x^3\right)\)
\(=\left(x^3-3^3\right)-\left(54+x^3\right)\\ =\left(x^3-27\right)-54-x^3\\ =-27-54\\ =-81\)
b) \(\left(3x+y\right)\left(9x^2-3xy+y^2\right)-\left(3x-y\right)\left(9x^2+3xy+y^2\right)\)
\(=\left[\left(3x\right)^3+y^3\right]-\left[\left(3x\right)^3-y^3\right]\\ =2y^3\)
2) a) \(\left(x+3y\right)\left(x^2-3xy+9y^2\right)=x^3+27y^3\)
b) \(\left(2x-3y\right)\left(4x^2+6xy+9y^2\right)=8x^3-27y^3\)
RUT GON PHAN THUC
\(\frac{y^2-x^2}{x^3-3x^2y+3xy^2-y^3}\)
\(\frac{y^2-x^2}{x^3-3x^2y+3xy^2-y^3}\)
\(=\frac{\left(y-x\right)\left(y+x\right)}{\left(x-y\right)^3}\)
\(=-\frac{\left(x-y\right)\left(x+y\right)}{\left(x-y\right)^3}\)
\(=-\frac{x+y}{\left(x-y\right)^2}\)
rut gon phan thức 3x^2-11xy+6y^2/x^3+3x-3xy-9y
giúp mình với ạ cần gấp lắm rùi
Cho bieu thuc:
P=\(\frac{1}{\sqrt{x}+2}-\frac{5}{x-\sqrt{x}-6}-\frac{\sqrt{x}-2}{3-\sqrt{x}}\)
a. Rut gon bieu thuc P
b.Tim GTLN cua P sau khi rut gon
đk: x>=0; x khác 3
a) \(P=\frac{\sqrt{x}-3}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-3\right)}-\frac{5}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-3\right)}+\frac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}{\sqrt{x}-3}=\frac{\sqrt{x}-3-5+x-4}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-3\right)}=\frac{x+\sqrt{x}-12}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-3\right)}\)
\(P=\frac{\left(\sqrt{x}+4\right)\left(\sqrt{x}-3\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-3\right)}=\frac{\sqrt{x}+4}{\sqrt{x}+2}\)
b) \(P=\frac{\sqrt{x}+2+2}{\sqrt{x}+2}=1+\frac{2}{\sqrt{x}+2}\)
ta có: \(x\ge0\Rightarrow\sqrt{x}\ge0\Leftrightarrow\sqrt{x}+2\ge2\Leftrightarrow\frac{2}{\sqrt{x}+2}\le1\Leftrightarrow1+\frac{2}{\sqrt{x}+2}\le2\Rightarrow MaxP=2\Rightarrow x=0\)
phân tích đa thức sau thành phân tử
a) 3x4y - 12x2y3
b) x2 - y2 - 8y -16
c) x3 +3x2 + 4x +12
d) 3x2 - 6xy + 3y2 - 27
a) \(3x^4y-12x^2y^3=3x^2y\left(x^2-\left(2y\right)^2\right)=3x^2y\left(x+2y\right)\left(x-2y\right)\)
b) Sửa đề: \(x^2-y^2-8x+16=\left(x-4\right)^2-y^2=\left(x-4-y\right)\left(x-4+y\right)\)
c) \(x^3+3x^2+4x+12=x^2\left(x+3\right)+4\left(x+3\right)=\left(x^2+4\right)\left(x+3\right)\)
d) \(3x^2-6xy+3y^2-27=3\left(x^2-2xy+y^2-9\right)=3\left(\left(x-y^2\right)-3^2\right)=3\left(x-y-3\right)\left(x-y+3\right)\)
Phân tích các đa thức sau thành nhân tử:
a) 3x4y - 12x2y3
b) x2 - y2 - 8y -16
c) x3 +3x2 + 4x +12
d) 3x2 - 6xy + 3y2 - 27
\(3x^4y-12x^2y^3=3x^2y\left(x^2-4y^2\right)=3x^2y\left(x-2y\right)\left(x+2y\right)\)
\(x^2-y^2-8y-16=x^2-\left(y^2+8y+16\right)=x^2-\left(y+4\right)^2=\left(x+y+4\right)\left(x-y-4\right)\)
\(x^3+3x^2+4x+12=x^2\left(x+3\right)+4\left(x+3\right)=\left(x^2+4\right)\left(x+3\right)\)
\(3x^2-6xy+3y^2-27=3\left[\left(x-y\right)^2-9\right]=3\left(x-y-3\right)\left(x-y+3\right)\)
C= 3 / 1 x 1 x 2 x1 + 5 / 2 x2 x 3x2 +...+19 / 9 x9 x 10 x10 . Rut gon C
rut gon
a) \(A=\left(\frac{x+\sqrt{x}+1}{x+\sqrt{x}-2}-\frac{1}{1-\sqrt{x}}+\frac{1}{\sqrt{x}+2}\right)\)
Lời giải:
ĐKXĐ: \(x\geq 0; x\neq 1\)
Ta có:
\(A=\frac{x+\sqrt{x}+1}{(\sqrt{x}-1)(\sqrt{x}+2)}+\frac{1}{\sqrt{x}-1}+\frac{1}{\sqrt{x}+2}=\frac{x+\sqrt{x}+1}{(\sqrt{x}-1)(\sqrt{x}+2)}+\frac{\sqrt{x}+2}{(\sqrt{x}-1)(\sqrt{x}+2)}+\frac{\sqrt{x}-1}{(\sqrt{x}+2)(\sqrt{x}-1)}\)
\(=\frac{x+\sqrt{x}+1+\sqrt{x}+2+\sqrt{x}-1}{(\sqrt{x}-1)(\sqrt{x}+2)}=\frac{x+3\sqrt{x}+2}{(\sqrt{x}-1)(\sqrt{x}+2)}=\frac{(\sqrt{x}+1)(\sqrt{x}+2)}{(\sqrt{x}-1)(\sqrt{x}+2)}=\frac{\sqrt{x}+1}{\sqrt{x}-1}\)
A=\(\left(\frac{x^3+1}{x^2-1}-\frac{x^2-1}{x-1}\right):\left(x+\frac{x}{x-1}\right)\)
rut gon a
ĐKXĐ : x khác -1 và 1
A = [x^3+1-(x^2-1).(x+1)/(x-1).(x+1)] : [x.(x-1)+x/x-1]
= [-x^2+x/(x-1).(x+1)] : x^2/x-1
= -x.(x-1)/(x-1).(x+1) . (x-1)/x^2
= -(x-1)/x.(x+1)
k mk nha