Lời giải:
ĐKXĐ: \(x\geq 0; x\neq 1\)
Ta có:
\(A=\frac{x+\sqrt{x}+1}{(\sqrt{x}-1)(\sqrt{x}+2)}+\frac{1}{\sqrt{x}-1}+\frac{1}{\sqrt{x}+2}=\frac{x+\sqrt{x}+1}{(\sqrt{x}-1)(\sqrt{x}+2)}+\frac{\sqrt{x}+2}{(\sqrt{x}-1)(\sqrt{x}+2)}+\frac{\sqrt{x}-1}{(\sqrt{x}+2)(\sqrt{x}-1)}\)
\(=\frac{x+\sqrt{x}+1+\sqrt{x}+2+\sqrt{x}-1}{(\sqrt{x}-1)(\sqrt{x}+2)}=\frac{x+3\sqrt{x}+2}{(\sqrt{x}-1)(\sqrt{x}+2)}=\frac{(\sqrt{x}+1)(\sqrt{x}+2)}{(\sqrt{x}-1)(\sqrt{x}+2)}=\frac{\sqrt{x}+1}{\sqrt{x}-1}\)