Cho biểu thức M = 1/5+1/5^2+1/5^3+.....+1/5^2014
Chứng minh M<1/3
Cho biểu thức M = 1 + 5 + 5² + 5³ + ... + 5²⁰²² + 5²⁰²³
Chứng minh: M chia hết cho 6.
\(M=1+5+5^2+...+5^{2023}\)
\(M=\left(1+5\right)+\left(5^2+5^3\right)+...+\left(5^{2022}+5^{2023}\right)\)
\(M=6+5\cdot\left(1+5\right)+5^2\cdot\left(1+5\right)+...+5^{2022}\cdot\left(1+5\right)\)
\(M=6+5\cdot6+5^2\cdot6+....+5^{2022}\cdot6\)
\(M=6\cdot\left(1+5+5^2+...+5^{2022}\right)\) ⋮ 6
Vậy: M ⋮ 6
Huỳnh Thanh Phong
E hơi thắc mắc phần
\(6+5.\left(1+5\right)\)
ạ.
\(M=\frac{1}{5}+\frac{1}{5^2}+\frac{1}{5^3}+...+\frac{1}{5^{2013}}+\frac{1}{5^{2014}}\)
Chứng minh rằng \(M< \frac{1}{3}\)
\(M=\frac{1}{5}+\frac{1}{5^2}+...+\frac{1}{5^{2013}}+\frac{1}{5^{2014}}\)
\(5M=1+\frac{1}{5}+\frac{1}{5^2}+...+\frac{1}{5^{2013}}\)
\(\Rightarrow4M=1-\frac{1}{5^{2014}}< 1\)
\(\Rightarrow M< \frac{1}{4}< \frac{1}{3}\)
Bài 1 :
Cho A = \(1+3+3^2+....+3^{11}\) . Chứng minh rằng :
a) A chia hết cho 13 b) A chia hết cho 40
Bài 2 :
Cho C = \(3+3^2+3^3+3^4+......+3^{100}\) . Chứng minh rằng : C chia hết cho 40 .
Bài 3 :
Cho biểu thức : M = \(1+3+3^2+3^3+......+3^{118}+3^{119^{ }}\)
a) Thu gọn biểu thức M b) Biểu thức M có chia hết cho 5 , 13 không . Vì sao ?
Bài 4 :
Cho S = \(5+5^2+5^3+5^4+5^5+5^6+.......+5^{2012}\) . Chứng minh rằng S chia hết cho 65.
Bài 1 : \(A=1+3+3^2+...+3^{31}\)
a. \(A=\left(1+3+3^2\right)+...+3^9.\left(1.3.3^2\right)\)
\(\Rightarrow A=13+3^9.13\)
\(\Rightarrow A=13.\left(1+...+3^9\right)\)
\(\Rightarrow A⋮13\)
b. \(A=\left(1+3+3^2+3^3\right)+...+3^8.\left(1+3+3^2+3^3\right)\)
\(\Rightarrow A=40+...+3^8.40\)
\(\Rightarrow A=40.\left(1+...+3^8\right)\)
\(\Rightarrow A⋮40\)
Bài 2:
Ta có: \(C=3+3^2+3^4+...+3^{100}\)
\(\Rightarrow C=(3+3^2+3^3+3^4)+...+(3^{97}+3^{98}+3^{99}+3^{100})\)
\(\Rightarrow3.(1+3+3^2+3^3)+...+3^{97}.(1+3+3^2+3^3)\)
\(\Rightarrow3.40+...+3^{97}.40\)
Vì tất cả các số hạng của biểu thức C đều chia hết cho 40
\(\Rightarrow C⋮40\)
Vậy \(C⋮40\)
Cho biểu thức
\(M=\dfrac{1}{5}+\left(\dfrac{1}{5}\right)^2+\left(\dfrac{1}{5}\right)^3+...+\left(\dfrac{1}{5}\right)^{49}+\left(\dfrac{1}{5}\right)^{50}\)
Chứng minh rằng \(M< \dfrac{1}{4}\)
Cho biểu thức
\(M=\frac{1}{5}+\left(\frac{1}{5}\right)^2+\left(\frac{1}{5}\right)^3+...+\left(\frac{1}{5}\right)^{49}+\left(\frac{1}{5}\right)^{50}\)
chứng minh rằng \(M< \frac{1}{4}\)
\(M=\frac{1}{5}+\left(\frac{1}{5}\right)^2+\left(\frac{1}{5}\right)^3+...+\left(\frac{1}{5}\right)^{49}+\left(\frac{1}{5}\right)^{50}\)
\(5M=1+\frac{1}{5}+\left(\frac{1}{5}\right)^2+...+\left(\frac{1}{5}\right)^{48}+\left(\frac{1}{5}\right)^{49}\)
5M - M = \(1-\left(\frac{1}{5}\right)^{50}\)hay 4M = \(1-\left(\frac{1}{5}\right)^{50}\)< 1
\(\Rightarrow M=\frac{1-\left(\frac{1}{5}\right)^{50}}{4}< \frac{1}{4}\)
\(M=\frac{1}{5}+\left(\frac{1}{5}\right)^2+...+\left(\frac{1}{5}\right)^{50}\)(1)
\(\Rightarrow5M=1+\frac{1}{5}+...+\left(\frac{1}{5}\right)^{49}\)(2)
Lấy (2)-(1) ta có
\(\Rightarrow4M=1-\left(\frac{1}{5}\right)^{50}\)
\(\Rightarrow M=\frac{1-\frac{1}{5^{50}}}{4}\)
Do \(1-\frac{1}{5^{50}}< 1\)
\(\Rightarrow M< \frac{1}{4}\)
\(M=\frac{1}{5}+\left(\frac{1}{5}\right)^2\)
Cho biểu thức:
M=1/5+(1/5)^2+(1/5)^3+.....+(1/5)^50
Chứng minh rằng M<1/4
Các bạn giải giúp mình với nha
Ngày mai mình phải đi học rồi
Ai làm nhanh và làm đúng mình sẽ tick cho
M = \(\frac{1}{5}+\left(\frac{1}{5}\right)^2+\left(\frac{1}{5}\right)^3+...+\left(\frac{1}{5}\right)^{^{^{ }}50}\)
=> 5M = 1 + \(\frac{1}{5}+\left(\frac{1}{5}\right)^2+...+\left(\frac{1}{5}\right)^{49}\)
=> 5M - M = ( 1 + \(\frac{1}{5}+\left(\frac{1}{5}\right)^2+...+\left(\frac{1}{5}\right)^{49}\)) - ( \(\frac{1}{5}+\left(\frac{1}{5}\right)^2+\left(\frac{1}{5}\right)^3+...+\left(\frac{1}{5}\right)^{^{^{ }}50}\))
4M = 1 - \(\left(\frac{1}{5}\right)^{50}\)
=> M = \(\frac{1-\left(\frac{1}{5}\right)^{50}}{4}\)< \(\frac{1}{4}\)
Cho biểu thức M = \(\frac{1}{5}\)+ \(\left(\frac{1}{5}\right)^2\)+ \(\left(\frac{1}{5}\right)^3\)+...+ \(\left(\frac{1}{5}\right)^{50}\). Chứng minh M < 0,25
\(M=\frac{1}{5}+\left(\frac{1}{5}\right)^2+...+\left(\frac{1}{5}\right)^{50}\)
\(M=\frac{1}{5}+\frac{1}{5^2}+...+\frac{1}{5^{50}}\)
\(5M=5\left(\frac{1}{5}+\frac{1}{5^2}+...+\frac{1}{5^{50}}\right)\)
\(5M=1+\frac{1}{5}+...+\frac{1}{5^{49}}\)
\(5M-M=\left(1+\frac{1}{5}+...+\frac{1}{5^{49}}\right)-\left(\frac{1}{5}+\frac{1}{5^2}+...+\frac{1}{5^{50}}\right)\)
\(4M=1-\frac{1}{5^{50}}\)
\(M=\frac{1-\frac{1}{5^{50}}}{4}< \frac{1}{4}=0,25\)
Đpcm
Cho biểu thức : M = 50 + 51 + 52 + 53 + ... + 52009. Chứng minh rằng : ( 4M +1 ).22010 là một số chính phương
Cho biểu thức A= [2x/2x(x-1)+3-3x - 5/2x-3 ] : 5-3x/1-x
a) tìm x để biểu thức A có nghĩa và rút gọn A
b) Chứng minh rằng với mọi x để A có nghĩa thì biểu thức M= 2/x2+2 - 1/3-2x + A chỉ nhận đúng 1 giá trị nguyên
Bài 17.Cho phân thức: A=2x-1/x^2-x
a. Tìm điều kiện để giá trị của phân thức được xác định.
x^2 - x # 0
<=> x ( x - 1 ) # 0
<=> x # 0
<=> x -1 # 0 => x # 1
b. Tính giá trị của phân thức khi x = 0 và khi x = 3.
Nếu x = 0 thì phân thức ko xác định
Nếu x = 3 thì
2.3 - 1 / 3^2 - 3
= 5/6