Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Bối Bối
Xem chi tiết
Trần Ái Linh
4 tháng 1 2023 lúc 23:55

a) `P=x^2-4x+5`

`=(x^2-4x+4)+1`

`=(x^2-2.x.2+2^2)+1`

`=(x-2)^2+1`

Vì `(x-2)^2 >=0 ` nên `(x-2)^2+1 >=1 >0` với mọi `x`

`<=> (x-2)^2+1 >0` với mọi `x`

Vậy ta có điều phải chứng minh.

``

b) `P=x^2-2x+2`

`=(x^2-2x+1)+1`

`=(x^2-2.x.1+1^2)+1`

`=(x-1)^2+1`

Vì `(x-1)^2 >=0` với mọi `x`

`=>(x-1)^2+1 >=1 >0` với mọi `x`

`<=> (x-1)^2+1 >0` với mọi `x`

Vậy ta có điều phải chứng minh.

#Blue Sky
4 tháng 1 2023 lúc 23:58

\(a,P=x^2-4x+5\)

\(=x^2-2.x.2+4+1\)

\(=\left(x-2\right)^2+1\)

Vì \(\left(x-2\right)^2\ge0\forall x\) mà \(1>0\)

\(\Rightarrow\left(x-2\right)^2+1>0\forall x\)

Vậy đa thức \(P\) luôn luôn lớn hơn 0 \(\forall x\)

_____________________________________

\(b,P=x^2-2x+2\)

\(=x^2-2.x.1+1+1\)

\(=\left(x-1\right)^2+1\)

Vì \(\left(x-1\right)^2\ge0\forall x\) mà \(1>0\)

\(\Rightarrow\left(x-1\right)^2+1>0\forall x\)

Vậy đa thức \(P\) luôn luôn lớn hơn 0 \(\forall x\)

Linh Nguyen
Xem chi tiết
nguyen thi vang
9 tháng 10 2017 lúc 13:01

Phép nhân và phép chia các đa thức

Câu a mình chắc chắn là đúng vì mình làm rồi.vui

Chúc bạn học tốt.

nguyen thi vang
9 tháng 10 2017 lúc 13:09

b) \(-4x^2-4x-2\) <0 với mọi x

\(=-\left(4x^2+4x+2\right)\)

\(=-\left[\left(2x^2\right)+2.2x.1+1^2+2\right]\)

\(=-\left[\left(2x+1\right)^2+2\right]\)

\(=-\left(2x+1\right)^2-2\)

Nx : \(-\left(2x+1\right)^2\le0\) với mọi x

\(\Rightarrow-\left(2x+1\right)^2-2< 0\) với mọi x

\(\Rightarrow-4x^2-4x-2< 0\) với mọi x

Mai Hà Chi
9 tháng 10 2017 lúc 18:18

Làm được cái nào thì hay cái đó nha :''>>

e/ \(x^2+5y^2+2x-4xy-10y+14\)

\(=\left(x^2-4xy+4y^2\right)+2\left(x-2y\right)+1+\left(y^2-6y+9\right)+4\)

\(=\left(x-2y\right)^2+2\left(x-2y\right)+1+\left(y-3\right)^2+4\)

\(=\left[\left(x-2y\right)^2+2\left(x-2y\right).1+1^2\right]+\left(y-3\right)^2+4\)

\(=\left(x-2y+1\right)^2+\left(y-3\right)^2+4\) (1)

\(\left\{{}\begin{matrix}\left(x-2y+1\right)^2\ge0\\\left(y-3\right)^2\ge0\end{matrix}\right.\) \(\forall x\in R\)

=> (1) > 0

Vậy......

Hai Nguyen
Xem chi tiết
Im lonely
Xem chi tiết
Im lonely
9 tháng 9 2018 lúc 12:22

nhanh nha

Tuan
9 tháng 9 2018 lúc 12:48

k mk đi

ai k mk

mk k lại

thanks

Im lonely
Xem chi tiết
Lê vsbzhsjskskskssm
Xem chi tiết
Nguyễn Ngọc Trang
Xem chi tiết
Remind
16 tháng 7 2023 lúc 16:21

P = (x^2 + 2x) - 2024
= (x^2 + 2x + 1) - 1 - 2024
= (x + 1)^2 - 2025

Với mọi giá trị của x, (x + 1)^2 luôn lớn hơn hoặc bằng 0. Do đó, giá trị nhỏ nhất của P là khi (x + 1)^2 đạt giá trị nhỏ nhất, tức là bằng 0.

Khi (x + 1)^2 = 0, ta có x + 1 = 0, từ đó suy ra x = -1.

Vậy, giá trị nhỏ nhất của biểu thức P là P = (-1 + 1)^2 - 2025 = -2025.

trịnh thủy tiên
Xem chi tiết
Edowa Conan
15 tháng 8 2016 lúc 18:33

a)x2-6x+10

      Ta có:x2-6x+10=x2-2.3x+9+1

                               =(x-3)2+1

            Vì (x-3)2\(\ge\)0

 Suy ra:(x-3)2+1\(\ge\)1(đpcm)

b)4x-x2-5

      Ta có:4x-x2-5=-(x2-4x+5)

                           =-(x2-2.2x+4)-1

                           =-1-(x-2)2

              Vì -(x-2)2\(\le\)0

Suy ra:-1-(x-2)2\(\le\)-1(đpcm)

 

Hoàng Lê Bảo Ngọc
15 tháng 8 2016 lúc 18:31

a) \(x^2-6x+10=\left(x^2-6x+9\right)+1=\left(x-3\right)^2+1>0\) với mọi x

b) \(4x-x^2-5=-\left(x^2-4x+4\right)-1=-\left(x-2\right)^2-1< 0\) với mọi x

Lightning Farron
15 tháng 8 2016 lúc 18:38

a)x2-6x+10

=x2-6x+9+1

=(x-3)2+1

Ta thấy:\(\left(x-3\right)\ge0\) với mọi x

\(\Rightarrow\left(x-3\right)^2+1>0\) với mọi x

b)4x-x2-5

=-(x2-4x+5)

=-(x-4x+4+1)

=-(x-2)2-1

Ta thấy:\(-\left(x-2\right)^2\le0\) với mọi x

\(\Rightarrow-\left(x-2\right)^2-1< 0\) với mọi x

Hơi khó
Xem chi tiết
Nguyễn Lê Phước Thịnh
2 tháng 4 2023 lúc 23:41

a: =(x^2+3x)(x^2+3x+2)+1

=(x^2+3x)^2+2(x^2+3x)+1

=(x^2+3x+1)^2>=0 với mọi x

 

b: (a^2+b^2+c^2)(x^2+y^2+z^2)-(ax+by+cz)^2

=a^2x^2+a^2y^2+a^2z^2+b^2x^2+b^2y^2+b^2z^2+c^2x^2+c^2y^2+c^2z^2-a^2x^2-b^2y^2-c^2z^2-2axby-2axcz-2bycz

=(a^2y^2-2axby+b^2x^2)+(a^2z^2-2azcx+c^2x^2)+(b^2z^2-2bzcy+c^2y^2)

=(ay-bx)^2+(az-cx)^2+(bz-cy)^2>=0(luôn đúng)